
Rhyme Prototype Type Rules

November 10, 2024

Contents

1 Primitive Types 2

2 Subtype Definition and Properties 2
2.1 Subtype Relationships . 2

2.1.1 Numbers . 2
2.1.2 Strings . 3

3 Union Definition and Properties 3

4 Intersection Definition and Properties 3
4.1 Non-Intersecting Types . 3

5 NotEmpty Types 4

6 Result Propagation 4

7 Number Types 4
7.1 Pure Operations on Numbers . 4
7.2 Stateful Operations on Numbers . 5

8 Key Types 5
8.1 Pure Operations on Keys . 5
8.2 Stateful Operations on Keys . 5

9 Object Types 5

10 Object Accessing 6
10.1 Determining types of filter variables . 6

11 General Stateful Operations 7

12 Functions 7
12.1 Definition . 7
12.2 Subtyping Relation . 7

13 Unknown Type 7
13.1 Pure Operations on Unknown . 8
13.2 Stateful Operations on Unknown . 8
13.3 Object Access Operation with Unknown . 8

1

1 Primitive Types

Firstly, there are two types named ”Any” (denoted ⊤) and ”Never” (defined ⊥). Any is a supertype of all
types, while Never is a subtype of all types. When considering types as sets of possible values, it can be
helpful to consider Any as the set of all possibles values, and Never as the empty set.

For numbers, there are 8, 16, 32, and 64 bit variants of signed and unsigned integers, aswell at 32 and 64bit
floating point integers.

For these number values:

Let U = {u8, u16, u32, u64}. Let I = {i8, i16, i32, i64}, and F = {f32, f64}.

Let N = U ∪ I ∪ F .

For strings, there is a base string type, String, and constant strings. In terms of sets, String can be thought
of as the set of all strings, while a constant string is a set containing a singular, constant string.

There are aswell more types: Keys, Objects, and Functions, that are defined later, aswell as an Unknown
type.

2 Subtype Definition and Properties

Consider the following as the definition of a type being a subtype.

Γ ⊢ x : T ⊢ T ≤: S

Γ ⊢ x : S

⊢ T ≤: T

⊢ T ≤: S ⊢ S ≤: T

⊢ S =: T

Let the following be the definition of the =: relation between types.

⊢ S =: T
⊢ T ≤: S ⊢ S ≤: T

2.1 Subtype Relationships

By definition of Any and Never, the following must be true, for any type T :

⊢ T ≤: ⊤

⊢ ⊥ ≤: T

2.1.1 Numbers

u8 ≤: u16 ≤: u32 ≤: u64

i8 ≤: i16 ≤: i32 ≤: i64

f32 ≤: f64, u8 ≤: i16, u16 ≤: i32, u32 ≤: i64

Technically, these following subtypes can also be added, given the size of the mantissa of floats. However,
given CPU architecture design, a conversion would be required, which would add complexity. It might be
better to consider an implicit/explicit casting operation.

2

i16 ≤: f32, u16 ≤: f32

i32 ≤: f64, u32 ≤: f64

2.1.2 Strings

⊢ S is a constant string

⊢ S ≤: string

3 Union Definition and Properties

⊢ T ≤: (T ∪ S)

⊢ (S ∪ T) =: (T ∪ S)

⊢ (T ∪ T) =: T

⊢ T ≤: S

⊢ (T ∪ S) =: S

4 Intersection Definition and Properties

Γ ⊢ t : T Γ ⊢ t : S
Γ ⊢ t : (T ∩ S)

⊢ (T ∩ S) ≤: T

⊢ (S ∩ T) =: (T ∩ S)

⊢ (T ∩ T) =: T

⊢ T ≤: S

⊢ (T ∩ S) =: T

⊢ T ′ ≤: T ⊢ S ∩ T ′ =: P ⊢ S ∩ (T \ T ′) =: Q

⊢ S ∩ T =: P ∪Q

4.1 Non-Intersecting Types

⊢ T ∩ ⊥ =: ⊥

⊢ T ≤: u64 ∪ i64 ∪ f64 ⊢ S ≤: string

⊢ T ∩ S =: ⊥

⊢ T ≤: u64 ∪ i64 ∪ f64 ⊢ S ≤: {}
⊢ T ∩ S =: ⊥

⊢ T ≤: {} ⊢ S ≤: string

⊢ T ∩ S =: ⊥

⊢ T is a constant string ⊢ S is a constant string ⊢ T ̸= S

⊢ T ∩ S =: ⊥

3

5 NotEmpty Types

With intersections constricting types to a smaller set than either input could yield, it can happen that the
intersection of two types that are both nonempty yields a Never type. This has serious problems whenever
it comes to filter variables, and specifically object accesses using them, because there is no guarantee that
two keys in objects will appropriately overlap and their intersection be nonempty. However, there are
certain compile time guarantees that can be made if a type is known for certain to be nonempty. As such,
it’s important to define a way of determining if a type can be guranteed to be known to be nonempty at
compiletime. Aswell, implementation-wise, the programmer can explicitly tell the type system if a type is
nonempty as hints, .

As such, the NotEmpty function is defined as follows:

⊢ S ≤: T ⊢ NotEmpty(S)

⊢ NotEmpty(T)

⊢ T ∈ N
⊢ NotEmpty(T)

⊢ NotEmpty(String)

⊢ S is a constant string

⊢ NotEmpty(S)

⊢ NotEmpty({})

⊢ NotEmpty(S{K : V })

6 Result Propagation

It is possible that the evaluation of an expression does not yield any values, or it throws an error. As such,
there are two properties: the Nothing (N) and Error (E) properties. If an expression t yields an i64 type,
and can return nothing, then it is written as Γ ⊢ t : i64 | N .

Nothing and Error results inherently should be propagated whenever possible, except for in certain, usually
stateful, expressions, that remove the possibility of nothing by assuming a default value.

7 Number Types

7.1 Pure Operations on Numbers

Given the subtype relations, the following rules work for most instances, such as u8 + i16:

⊢ T ∈ N Γ ⊢ a : T | P1 Γ ⊢ b : T | P2

Γ ⊢ a+ b : T | P1 ∪ P2

These rules can then be extended to most other pure (math) operations.

TODO: Determine how to possibly handle errors of division by zero or similar. Perhaps explicitly include
the possibility of returning Nothing, as follows:

⊢ T ∈ N Γ ⊢ a : T | P1 Γ ⊢ b : T | P2

Γ ⊢ a/b : T | P1 ∪ P2 ∪N

TODO: Figure out relations between floats and integers, aswell as unsigned and signed integers. Specifically,

4

when they’re the same type.

7.2 Stateful Operations on Numbers

Same TODO applies for the relation between floats, signed ints, and unsigned ints, outside of the subtypes
given.

⊢ T ∈ N Γ ⊢ a : T | P ∪N
Γ ⊢ sum(a) : T | P

⊢ T ∈ N Γ ⊢ a : T | P ∪N
Γ ⊢ product(a) : T | P

⊢ T ∈ N Γ ⊢ a : T | P ∪N
Γ ⊢ sum(a) : T | P

⊢ T ∈ N Γ ⊢ a : T | P ∪N
Γ ⊢ product(a) : T | P

⊢ T ∈ N Γ ⊢ a : T | P
Γ ⊢ min(a) : T | P

⊢ T ∈ N Γ ⊢ a : T | P
Γ ⊢ max(a) : T | P

8 Key Types

Let there be a ”key” type Kn(T) defined by
⊢ Kn(T) ≤: T

.

⊢ Kn(T) ≤: T

⊢ T1 ∩ T2 =: ⊥
⊢ Kn1

(T1) ∩Kn2
(T2) =: ⊥

8.1 Pure Operations on Keys

Given x : Kn(T), we cannot guarantee that x + y : Kn(T). Hence, plus, minus, etc must yield type T . As
such, these rules are then covered since Kn(T) ≤: T , and previous rules cover the case of x : T

8.2 Stateful Operations on Keys

In a similar vein to the pure operations for keys, sum and product cannot guarantee the result would be a
key, so they must return the key’s supertype. Hence, the previous rules aswell cover sum and product.

T ∈ N ⊢ a : Kn(T) | P
⊢ min(a) : Kn(T) | P

T ∈ N ⊢ a : Kn(T) | P
⊢ max(a) : Kn(T) | P

9 Object Types

Objects are defined recursively through a base object alongside updates that insert a key value type pairs
into the object. While K is used as the variable for an object key, K does not necessarily have to be a key

5

type Kn(T).

Γ ⊢ {} : {} | ∅

Γ ⊢ x : T | P Γ ⊢ k : K | P1 Γ ⊢ v : V | P2

Γ ⊢ x{k : v} : T{Kn(K) : V } | P ∪ ((P1 ∪ P2) \ N)

Γ ⊢ x : T | P Γ ⊢ k : K | P1 \ N Γ ⊢ v : V | P2 \ N
Γ ⊢ x{k : v} : T{Kn(K) : V } | P ∪ P1 ∪ P2 ⊢ NotEmpty(Kn(K))

10 Object Accessing

Given the recursive definition of an object, accessing the value of an object then recursively searches for
potential values given a key type.

Γ ⊢ {}[k] : ⊥ | N

Γ ⊢ t : T{K : V1} | P1 Γ ⊢ k′ : K ′ | P2 ⊢ K ′ ≤: K

Γ ⊢ t[k′] : V1 | P1 ∪ P3

Γ ⊢ t : T{K : V1} | P1 Γ ⊢ k′ : K ′ | P2 Γ, k′ : (K ′ \K | P2) ⊢ parent(t)[k′] : V2 | P3

Γ ⊢ t[k′] : V1 ∪ V2 | P1 ∪ P2 ∪ P3

Γ ⊢ t : T{K : V1} | P1 Γ ⊢ k′ : K ′ | P2 ⊢ K ′ ∩K =: ⊥ Γ ⊢ parent(t)[k′] : V2 | P3

Γ ⊢ t[k′] : V2 | P1 ∪ P2 ∪ P3

Where parent(t{k : v}) = t

10.1 Determining types of filter variables

Given an object type, the domain of the type is given by the following function, denoted as the ”keyof”
function:

keyof({}) = ⊥

keyof(t{k : v} : T{K : V }) = K ∪ keyof(t)

As for determining the types of filter variables, let p be the program being analyzed. The type of a filter
variable f is defined as the fixpoint of T = ftypefT JpK with initial T = ⊤.

ftypefT J c K = T

ftypefT J x K = T

ftypefT J e[f ′] K = ftypefT J e K ∩ keyof(e) when f = f ′

ftypefT J e[f ′]? K = ftypefT J e K

ftypefT JF e1 e2K = ftypefT J e1 K ∩ ftypefT J e2 K

ftypefT JF eK = ftypefT J e K

6

Because the result is always a product of intersections, and narrower intersections will only yield narrower
results, this fixpoint is guaranteed to eventually converge onto some type. However, it is possible that type
is ⊥.

The type of the filter variable is then given by the inference rules:

⊢ NotEmpty(fix(ftypefT J p K))

Γ ⊢ f : fix(ftypefT J p K) | ∅

Γ ⊢ f : fix(ftypefT J p K) | N

where the initial value of T in the fixpoint is ⊤, and p is the entire program.

11 General Stateful Operations

Certain stateful operations don’t depend on types.

Γ ⊢ a : T | P
Γ ⊢ first(a) : T | P

Γ ⊢ a : T | P
Γ ⊢ last(a) : T | P

Γ ⊢ a : T | P
Γ ⊢ single(a) : T | P

TODO: Determine size of objects. The following rules assume amount of items in object won’t exceed
maximum value of 32-bit unsigned integer.

Γ ⊢ a : T | P \ N
Γ ⊢ array(a) : {}{Kn(u32) : T} | P ⊢ NotEmpty(Kn(u32))

Γ ⊢ a : T | P ∪N
Γ ⊢ array(a) : {}{Kn(u32) : T} | P

12 Functions

12.1 Definition
Γ ⊢ f : ((T1, T2, ..., Tn) ⇒ S) | P Γ ⊢ x1 : T1 | P1, x2 : T2 | P2, ..., xn : Tn | Pn

Γ ⊢ f(x1, x2, ..., xn) : S | P ∪ P1 ∪ P2 ∪ ... ∪ Pn

12.2 Subtyping Relation

T1 ≤: S1, T2 ≤: S2, ..., Tn ≤: Sn R1 ≤: R2

(S1, S2, ..., Sn) ⇒ R1 ≤: (T1, T2, ..., Tn) ⇒ R2

13 Unknown Type

Consider a new type Unknown.

A value with type of Unknown can be used in place of a value with a specific type T . However, in the instance
that it is not of type T , then an error will be thrown. For certain operations in which no restrictions on

7

types are made, this means no error will be thrown. However, for operations with restrictions (e.g. addition
can only occur with numbers), an error can be thrown.

Unknown is neither a supertype or subtype of any specific type.

13.1 Pure Operations on Unknown

Note: Cannot have y : T | ∅ → x + y : T | E , because if T is a u8 and Unknown is a u64, then x + y : u64.
It is necessary that x + y hence is a supertype that can encapsulate all possible numbers. However, it is
undecided as to how u64, i64, and f64 are to be related. As such, the union of these will be explicitly shown.

⊢ x : Unknown | P1 ⊢ y : T | P2 ⊢ T ∈ N

⊢ x+ y : u64 ∪ i64 ∪ f64 | P1 ∪ P2 ∪ E

⊢ x : Unknown | P1 ⊢ y : Unknown | P2

⊢ x+ y : u64 ∪ i64 ∪ f64 | P1 ∪ P2 ∪ E

13.2 Stateful Operations on Unknown

Stateful operations requiring numbers or comparable values would have to result in either a number or an
Error.

⊢ x : Unknown | P
⊢ min(x) : u64 ∪ i64 ∪ f64 | P ∪ E

⊢ x : Unknown | P
⊢ max(x) : u64 ∪ i64 ∪ f64 | P ∪ E

⊢ x : Unknown | P ∪N
⊢ sum(x) : u64 ∪ i64 ∪ f64 | P ∪ E

⊢ x : Unknown | P ∪N
⊢ product(x) : u64 ∪ i64 ∪ f64 | P ∪ E

The other stateful operations covered in the general rules would apply without problem.

13.3 Object Access Operation with Unknown

There’s two possible ways of handling object accesses on Unknown types. Given an unknown type could be
a non-object, the result must inherently error. However, even if successful, the result type would still be
unknown. Hence, it can be Unknown, or, alternatively, it can be Any. Of the two, propagating the existing
type of Unknown appears to make more sense, hence the rule is:

⊢ x : Unknown | P1 ⊢ k : T | P2

⊢ x[k] : Unknown | P1 ∪ P2 ∪ E

Considering the opposite then aswell, the existing rules for accessing should apply. Specifically note though
that the intersection between unknown and the keys is non-empty, hence all possible values could be included
as a result of the operation, aswell as Nothing.

8

