
                         
 

 

 

 

Semantic-enhanced Programmable 

Knowledge Graph (SPG) 

White paper（v1.0） 

——The new generation industrial-grade knowledge 

semantic framework and engine 

 

 

Utilize SPG's domain type constraints and the fusion representation of 

facts and logic to automatically complete and increase the semantic relations 

between knowledge elements, promoting the explicit densification of sparse 

relationships between knowledge elements. Using the SPG framework can 

accelerate the knowledge integration of massive enterprise data, and 

seamlessly connect AI applications through its knowledge symbolic 

representation and programmability capabilities. 

 

 

 

 

Ant Group × OpenKG co-produced 

August 2023 

 



Copyright Notice 
     

The copyright of this white paper belongs to Ant Group and OpenKG, 

and it is protected by law. If you intend to reproduce, excerpt, or use the 

content or ideas presented in this white paper, please attribute it as “Source: 

Ant Group × OpenKG”. Any violation of this statement will result in legal 

consequences and be subject to relevant legal liabilities imposed by Ant 

Group and OpenKG. 

 

Writing instructions 

Lead Writing Unit: Ant Technology Group Co., Ltd. 

Participating Writing Units: Tongji University, Tianjin University, Hundsun Electronics Co., 

Ltd., Zhejiang Chuanglin Technology Co., Ltd., Daguan Data Co., Ltd., Haiyizhi Information 

Technology (Nanjing) Co., Ltd., Zhejiang University, Zhijiang Laboratory, Institute of 

Computing Technology, Chinese Academy of Sciences. 

Writing team member 

Ant Technology Group Co., Ltd.: Lei Liang, Zhiqiang Zhang, Jin Peng, Peilong Zhao, Zhihui 

Guo, Yuxiao He, Lin Yuan 

Tongji University: Haofen Wang 

Tianjin University: Xin Wang, Xiang Wang 

Hundsun Electronics Co., Ltd.: Shuo Bai, Jiao Chen 

Zhejiang Chuanglin Technology Co., Ltd.: Yan Zhou, Chen Zhang 

Daguan Data Co., Ltd.: Wenguang Wang, Mengjie He 

Haiyizhi Information Technology (Nanjing) Co., Ltd.: Fanghuai Hu, Jun Ding 

Zhejiang University: Huajun Chen, Wen Zhang 

Zhijiang Laboratory: Heng Zhang 

Institute of Computing Technology, Chinese Academy of Sciences: Long Bai 



Semantic-enhanced Programmable Knowledge Graph (SPG) White paper 

 

Recommendations 

The knowledge graph is an extension of early expert systems and semantic web technology. Since 

Google applied it to the search recommendation field in 2012, knowledge graph technology has been widely 

adopted in various domains. However, the semantic representation and technical framework of knowledge 

graphs have not made significant progress for a long time, leading to increased costs and complexities in 

constructing knowledge graphs across different fields. I am pleased to learn about the collaboration between 

Ant Group and OpenKG, which leverages Ant Group's extensive industrial experience in knowledge graphs 

to propose a knowledge semantic framework called SPG. SPG is compatible with big data systems and AI 

technology systems, and it offers programmability, framework characteristics, and strong cross-scenario 

migration capabilities. This accelerates the industrialization of knowledge graphs and represents a 

breakthrough in the knowledge graph technology framework. Since the end of 2022, large language models 

(LLMs) such as ChatGPT and GPT4 have triggered a new wave of artificial intelligence. However, current 

LLMs still face challenges such as knowledge illusion, complex reasoning fallacies, and high computational 

costs. As a complement to LLMs, the technical system of symbolic knowledge graphs enables controlled 

content understanding and generation. It provides support for accurate domain knowledge and complex 

reasoning capabilities, facilitating the implementation of LLMs across different industries. We anticipate 

that SPG will become an important technology in the field of knowledge graphs. Through Ant Group's 

continuous refinement across diverse scenarios and its collaboration with the OpenKG community, it will 

drive industry development in the field of knowledge graphs, promote knowledge interconnection across 

different domains, and enable the controlled and low-cost implementation of LLMs and knowledge graph 

technology. 

 

——Juanzi Li, Director and professor of the Knowledge Intelligence Research Center of the 

Institute of Artificial Intelligence of Tsinghua University 

 

 
As a symbolic knowledge representation system, the knowledge graph possesses capabilities such as 

high-order semantics, rigorous structure, and complex reasoning. In the era of rapid development of large 

language models (LLMs), there is a rich interactive relationship between knowledge graphs and LLMs. On 

one hand, LLMs provide a powerful tool for constructing large-scale knowledge graphs at a low cost. 

Whether leveraging LLMs to build a world knowledge graph beyond the existing scale by 1-2 orders of 

magnitude has become an intriguing research question. On the other hand, the knowledge graph, with its 

high-quality and interpretable knowledge representation and reasoning capabilities, offers a potential 

exploration direction for addressing the idealistic challenges of LLMs. 

Traditional knowledge semantic frameworks like RDF/OWL and LPG have significant limitations in 

knowledge management and struggle to support the construction and application of knowledge graphs in the 
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era of LLMs. SPG, derived from the extensive business practices of the Ant Knowledge Graph team, 

effectively addresses the deficiencies of RDF/OWL and LPG in knowledge management. It represents a new 

generation of knowledge semantic framework that builds upon the engine architecture by leveraging SPG's 

semantic specifications and programmable paradigms. SPG facilitates efficient graph construction in various 

domains and enables semantic alignment of knowledge across different fields. 

The future development of the knowledge graph relies heavily on an active community. Ant Group will 

continue collaborating with the OpenKG community in areas such as SPG, the construction and evolution 

of the world knowledge graph, to accelerate its technological maturity and industrial implementation. We 

also welcome colleagues from industry and academia to actively participate in co-creation, jointly promoting 

the maturity and progress of knowledge graph technology, facilitating knowledge exchange and circulation 

between different fields, and building a new generation of AI technology systems driven by the controllable 

implementation of knowledge graph + LLMs. 

 

—— Wenguang Chen, President of Ant Group Technology Research Institute 

 

    
Ant Group possesses diversified business scenarios and massive amount of domain data. The SPG 

framework has been developed based on the extensive practical experience of Ant Group in knowledge 

graphs. The characteristics of Ant Group's business data, such as multi-source heterogeneity, temporal 

dynamics, and complex correlations, provide an excellent environment for constructing large-scale 

knowledge graphs. The SPG framework, by abstractly addressing multi-business and multi-scenario 

challenges, defines a new generation enterprise-level knowledge management paradigm with strong 

adaptability for enterprise-level applications. Through data intellectualization, the SPG framework 

transforms massive data into knowledge and solves high-dimensional business problems through methods 

like complex pattern calculation and graph learning reasoning. The SPG framework presents innovative 

possibilities for efficient domain knowledge graph construction and cross-domain knowledge graph 

semantic alignment. Furthermore, in the era of large language models (LLMs), the SPG framework, along 

with the domain knowledge graph built upon it, enables controlled implementation of LLMs in various 

business fields such as security risk control, micro credit, and digital finance. Through collaboration with 

OpenKG, we aim to accelerate the enhancement of the SPG framework by harnessing the power of the 

community and industry, promote the maturity of knowledge graph technology, and advance industry 

development. Throughout this journey, we welcome the active participation of all colleagues in co-creation, 

jointly driving the development and innovation of knowledge graph technology, and realizing controllable 

AI driven by both LLMs and knowledge graphs, ultimately expediting industry implementation. 

—— Jun Zhou, Head of Machine Intelligence Department and Researcher at Ant Group. 
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Preface 

As a method of modeling and managing data, knowledge graph has played a crucial role in the 

digitalization of enterprises. However, with the increasing demand for knowledge graph, traditional 

knowledge graph technology is encountering several challenges. Through extensive research and practical 

experience, Ant Group has identified limitations in traditional knowledge graph technology when dealing 

with complex business scenarios and large-scale data. For instance, the construction of knowledge graphs 

requires a unified industrial-level knowledge modeling framework that can adapt to diverse fields. The 

reasoning capabilities of knowledge graphs need to be more efficient and interpretable. Furthermore, the 

construction and reasoning processes of knowledge graph require enhanced programmability and cross-

scenario transferability. 

Lei Liang, as the Head of Ant Group's Knowledge Engine, led the team in developing an industrial-

level knowledge graph semantic framework called SPG (Semantic-enhanced Programmable Graph). During 

his initial introduction of the idea and SPG to me, I was pleasantly surprised to find that we were solving 

similar challenges at the same time. What was initially planned as a one-hour meeting gradually evolved 

into a morning of in-depth discussions. Subsequently, I felt increasingly compelled to integrate our efforts 

in expanding SPG to address new opportunities and needs in the era of large language models (LLMs), while 

also open-sourcing this comprehensive and innovative knowledge graph platform to the entire community. 

When I shared this idea with Lei Liang, both he and Ant Group provided strong support. We actively 

promoted collaboration between the various R&D teams of OpenKG and the Ant Knowledge Graph team, 

ultimately forming a virtual team to facilitate bi-weekly communication, design planning, and research and 

development work. 

The SPG framework is based on the property graph, combining the semantic nature of RDF/OWL and 

the structural nature of LPG. It offers the advantages of semantic simplicity and compatibility with big data. 

Through the SPG framework, we can achieve automatic layering of knowledge from dynamic to static, 

ensure the uniqueness of knowledge within domains, and define dependencies between knowledge. 

Furthermore, the SPG framework provides a programmable paradigm, supporting the rapid construction of 

new domain knowledge graph and cross-scenario migration. It has wide-ranging applications in solving 

typical problems and scenarios. In the context of risk mining knowledge graph and enterprise causal 

knowledge graph, the SPG framework can assist enterprises in identifying and addressing illicit activities, 

enhancing risk prevention and control capabilities. In terms of knowledge reasoning and intelligent question 

answering, the SPG framework can provide more accurate and interpretable inference results, improving 

user experience and decision-making effectiveness. 

In this whitepaper, we will provide a detailed introduction to the design principles, technical modules, 

and application cases of the SPG framework. We hope that through this whitepaper, readers will have a 

comprehensive understanding of the SPG framework and be inspired to engage in further discussion and 

collaboration. We believe that the SPG framework will provide stronger and more flexible support for 
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enterprise digitalization, driving the development and application of knowledge graph technology. Lastly, 

we would like to express our gratitude for your attention and support of this whitepaper. If you have any 

questions or suggestions regarding the SPG framework or knowledge graph technology, please feel free to 

contact us. Let's work together to create a future for the next generation of industrial-level knowledge graph!  

Thank you! 

 

——Haofen Wang, Lei Liang, and the SPG team 
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Chapter 1 From Data-Driven to Knowledge-Driven: 

Enterprises Deepen Competitive Advantages with 

Evolving Knowledge Graph Technology 

In the process of digitalization, enterprises have accumulated massive amounts of data. This includes 

both unstructured and semi-structured data such as text, images, videos, and audio, as well as structured data 

such as user behavior, product orders, services, and merchant profiles. Additionally, there are professional 

knowledge bases and industry data obtained from external channels to support business development. Faced 

with this vast amount of data, enterprises need to continuously create value for users while ensuring efficient 

management and risk control. This places high demands on the digital infrastructure of enterprises and 

provides diverse scenarios for AI technologies such as Knowledge Graphs (KGs) and Large Language 

Models (LLMs). It also brings new opportunities and challenges. AI technologies can help enterprises 

quickly discover patterns, analyze trends, and predict the future from massive amounts of data. This enables 

enterprises to better understand customer needs, optimize product design, and improve production efficiency. 

AI can also assist in intelligent risk management and anti-fraud detection. However, enterprises often face 

challenges such as data silos, data consistency conflicts, and data duplication due to business development 

and departmental differences. To improve data utilization efficiency, it is necessary to strengthen data 

management and application, and increase the utilization and value of data. Enterprises need to establish 

user-friendly management paradigms, define data structures based on business models, clarify semantics, 

eliminate ambiguities, and identify errors. They also strive to establish mechanisms for connecting data silos, 

enabling cross-system and cross-department data sharing and collaborative utilization. In addition, 

enterprises need to establish standardized data and service agreements to achieve efficient data collaboration, 

expert experience collaboration, and human-machine collaboration. Efficient data management mechanisms, 

standardized data modeling, ambiguity elimination to enhance consistency, and data silo connection are key 

issues faced by enterprises in their digitalization journey. More efficient organization and management of 

enterprise data and the utilization of AI technologies to fully explore data value have become the core driving 

forces for future enterprise growth. 

1.1 The Expectations of Knowledge Graph as the Next-generation 

Enterprise Knowledge Management Paradigm 

As an important branch of AI technology, Knowledge Graph has gained increasing popularity due to 

its ability to help enterprises organize and manage knowledge data more effectively. By semantically 

modeling and constructing a knowledge graph, enterprises can gain a better understanding of the 

relationships between data, uncover hidden values, and make informed decisions. In fact, Gartner predicted 

in 2021 that Data Fabric, based on Knowledge Graph technology, would become the next-generation data 

architecture. Neo4j and Cambridge Semantic have also released whitepapers introducing a new generation 
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of knowledge management paradigms based on Knowledge Graph. Neo4j considers a Knowledge Graph as 

a semantically enhanced graph, leveraging certain paradigms to semantically enhance the graph and discover 

more implicit clues from multidimensional relations. Cambridge Semantic believes that Knowledge Graph 

is a killer application for Data Fabric. It models entities, facts, concepts, and their relations in the real world, 

providing consistent modeling capabilities for different roles. It enables more accurate representation of 

organizational data and effectively connects data sources, graph storage, and downstream AI/BI tasks, 

breaking down data silos and enabling on-demand integration, loading, and seamless connection. Since 2018, 

Knowledge Graph applications in enterprise digitalization have been widely adopted in various vertical 

domains such as finance, healthcare, public security, and energy [1, 2, 3]. According to a report [4], the 

market size of Knowledge Graph in China is expected to reach 29 billion RMB by 2026, with finance and 

public security being the main driving forces. In the context of enterprise digitalization, the application of 

Knowledge Graph, such as merchant knowledge graph for merchant risk control, requires a deeper 

understanding of knowledge, particularly the need for in-depth context (i.e., Deep Context) perception for 

profiling and risk insights on thin data customer groups such as small and medium-sized businesses, new 

users, and dormant users [1]. Enterprise-level knowledge management is undergoing a transition from binary 

static models to dynamic multidimensional models. 

1.2 Transition from Binary Static to Multidimensional Dynamic: Shift 

in Knowledge Management Paradigms 

Knowledge Graph is a method of modeling and managing data that utilizes graph structure, knowledge 

semantics, and logical dependencies to provide capabilities for storing, reasoning, and querying factual 

knowledge. In its early applications, Knowledge Graph mainly involved extracting <s, p, o> triplets from 

public corpora to construct static knowledge graphs, aiming to improve search and recommendation 

efficiency and user experience. As Knowledge Graph applications have shifted from consumer-oriented 

applications like search and recommendation to enterprise-level applications in risk control and business 

management, as mentioned earlier, there is a growing demand for profiling and risk insights on long-tail 

sparse customer groups. This necessitates domain-specific graphs that possess comprehensiveness, accuracy, 

and interpretability. Moreover, the data sources for knowledge graphs have expanded beyond textual corpora 

to include diverse and heterogeneous enterprise data. These data sources include unstructured or semi-

structured User-Generated Content (UGC) or Professionally-Generated Content (PGC), structured profiles 

derived from business operations, transactional data, log records, as well as domain-specific business expert 

knowledge. To support growth management and risk control, it is crucial to build comprehensive profiles of 

customers, materials, channels, and other dimensions. Taking merchants as an example, Figure 1 illustrates 

the process of constructing such multidimensional profiles. 
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Figure 1: Constructing Merchant Entities 

Merchants have surpassed the limitations of static physical stores, as anyone can become a merchant 

through payment codes. However, this also increases the difficulty of risk control. It is meaningless to rely 

solely on textual concept tags for risk control, and adding actual factual relations such as transactions and 

social connections is far from sufficient. As shown in Figure 2, deep collaborative information from multiple 

aspects of entities is needed to discover more effective associations. The requirements for Knowledge Graph 

construction have shifted from static common knowledge to dynamic Deep Context in temporal and spatial 

dimensions. This requires relation propagation based on media (such as Wi-Fi, phone, email) and boundary-

based aggregation associations in continuous spatial dimensions [5,6]. It also involves tracking the 

multidimensional propagation context of events at different levels (micro, macro, and meso), achieving 

dense representation of sparse semantic relations between entities that are interpretable. 

 
Figure 2: Deep Context Semantic Expansion of Foundational Fact Knowledge Graph 
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In terms of business applications, Knowledge Graphs can be used to construct knowledge reasoning 

tasks, such as: 1) Product recommendations: By leveraging semantic connections like category, intent, and 

temporal information, the semantic associations between people-products, people-merchants, and products-

channels can be established, enabling semantic recall of products and representation transfer. 2) eKYB 

(Electronic Know Your Business): By leveraging media associations, behavioral events, and temporal 

aggregation, identification of shared merchants or individuals can be achieved, enabling effective profile 

completion and risk insights. In addition, Knowledge Graphs can also facilitate structured-aware text 

generation [7], such as: 1) Anti-money laundering intelligent adjudication and qualitative report generation: 

By combining Deep Context to predict risk behavior and detect criminal networks, the structure of networks 

and anomalies can be reconstructed through financial chains, temporal aggregation, and device associations, 

and then transformed into interpretable reports through knowledge graph to text conversion. 2) AI phone 

call victim alert: Suspicious devices, phishing domains/AppIDs, and criminal networks can be associated 

with transactional users, generating scripted conversations to alert users and intercept risks. These 

applications aim to achieve more intelligent and precise risk control and business inference, enhancing the 

efficiency and value of business operations. 

 

 
Figure 3: Evolution of Knowledge Representation from Binary to Multivariate 

In the case of merchant management and risk control, knowledge management requires strong 

contextual awareness. Common knowledge graphs, which lack the ability to perceive contextual information 

and temporal associations, often suffer a significant decrease in effectiveness when applied to scenarios with 

diversified or intertwined argument elements, as they are unable to perceive individual differences and rely 

solely on concept-level induction for reasoning [8]. Similar challenges arise in fields such as anti-fraud in 

public security, insurance claims, medical consultations, and corporate credit assessment. As a result, there 

has been a significant shift in the expectations of vertical industries towards knowledge graph. Knowledge 

representation has evolved from the binary static structure depicted in Figure 3 to multidimensional dynamic 

associations in temporal and spatial dimensions, better aligning with the requirements of real-world 

applications. 
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1.3 Integrating Domain Knowledge Provides New Approaches for AI 

Implementation 

According to Yunhe Pan, a member of the Chinese Academy of Engineering, data and knowledge are 

the two most important elements in the development of AI 2.0. Dealing with big data and multiple knowledge 

domains forms the core technologies for AI development, as knowledge can effectively assist in AI cognition, 

decision-making, and learning. 

During the process of digitalization, a large amount of domain-specific knowledge, such as factual 

knowledge, expert experience, and operational procedures, can be accumulated through the extraction of 

massive data or business practices. This knowledge, existing in various industries and difficult to obtain 

publicly, holds immense value. By effectively integrating industry expert knowledge with AI, issues related 

to controllability, safety, and interpretability in AI applications can be addressed. By the end of 2022, 

ChatGPT had gained global popularity, followed by a surge of similar models in the domestic market. 

However, as Large Language Models (LLMs) are black-box probabilistic models [9], they struggle to 

capture and acquire factual knowledge, resulting in illusions and logical errors [10]. Meanwhile, Knowledge 

Graph (KG) provide factual accuracy, timeliness, and logical rigor, making them an excellent complement 

to LLMs. The application paradigm of LLM+KG, where Knowledge Graph serve as constraints and a source 

of complex reasoning capabilities, has attracted widespread attention and sparked numerous application 

explorations and research studies [9,10,11]. 

Table 1: Applications of LLMs and KGs in different digital enterprise scenarios. 

 

In various application scenarios, taking merchant management and risk control as an example, the 

algorithm tasks can be categorized into the following five aspects: (1) Interactive Applications: including 

displaying products/services on the consumer end (C) and onboarding services/merchants on the business 

end (B). (2) Business Management: necessary business analysis and material management for enterprise and 

merchant operations. (3) Risk Control: combating illicit activities is an ongoing challenge for businesses, 

requiring enhanced awareness of thin data customer groups and rapid identification of new risk patterns. (4) 

Knowledge Construction: transforming external unstructured/semi-structured and structured data into 
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domain knowledge. (5) Knowledge Mining: continuous improvement of coverage for key elements and 

cross-entity relations to facilitate business growth and risk control. Table 1 lists potential applications of 

LLMs, KG and the mutual enhancement of LLMs and KG across different categories. These applications 

can help enterprises achieve better results and outcomes in the field of merchant management and risk control. 

 
Figure 4: Mutual Drive between Large Models and Knowledge Graph 

In general, taking the scenario of merchant management and risk control as an example, the algorithm 

tasks for LLM and KG applications can be categorized into three types: (1) LLM only: Due to the 

requirements for domain expertise and factual accuracy, there are currently no clearly applicable scenarios 

for LLM in the field of merchant management and risk control. (2) LLM + KG dual drive: This is mainly 

reflected in user interaction scenarios such as knowledge question-answering and report generation, as 

mentioned earlier, such as AI-powered phone call victim awakening and anti-money laundering intelligent 

trial report generation. Additionally, there are knowledge element extraction, entity linking, and other 

knowledge construction scenarios. The detailed description of the dual-drive of LLM and KG is presented 

in reference [10], including KG-enhanced LLM, LLM-enhanced KG, and the collaborative LLM+KG 

framework, as shown in Figure 4. (3) KG only: In decision-making, analysis, querying and knowledge 

mining scenarios that do not require complex language interaction and intent understanding, knowledge 

graph-based structured knowledge can be directly used for graph representation learning, rule reasoning, 

knowledge querying, and other tasks. By implementing the collaborative framework of LLM and KG, 

support is provided for cross-modal knowledge alignment, logic-guided knowledge reasoning, natural 

language knowledge querying, and more. This presents higher demands for unified representation of KG 

knowledge semantics and cross-scenario transferability of engine frameworks. 
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1.4 The Development of Knowledge Graph Technology System Needs 

to Keep Pace with the Times 

The development of the knowledge graph technology does not completely match the expectations of its 

application in the new paradigm of managing new knowledge data and the dual drive of Large Language 

Models. The development of knowledge graph technology also needs to keep pace with the times. 

Specifically, the following issues exist:  

Firstly, there is a lack of an industrial-level unified knowledge modeling framework. Despite the 

development of semantic-rich and loosely structured technologies such as Resource Description Framework 

(RDF) and Web Ontology Language (OWL) for many years, successful enterprise-level/commercial 

applications have not emerged. Instead, property graph with strong structure and weak semantics, such as 

Labeled Property Graph (LPG), has become the preferred choice for enterprise applications.  

Secondly, there is a lack of a unified technical framework [2], resulting in poor cross-domain 

transferability. Due to the variety of tools and complex links, knowledge construction in each domain needs 

to start from scratch. In addition, there are also significant technical challenges in other aspects, as listed in 

Table 2. 

Table 2: Technical Challenges Faced by Knowledge Graph in the New Paradigm. 

 

The goal of knowledge graph is to construct a machine-understandable and machine-reasonable digital 

world, achieving unified representation of knowledge semantics and hierarchical capability. This enables 

rapid construction of domain-specific knowledge graph and cross-scenario transferability, which is a 

fundamental core issue that must be addressed in the accelerated industrialization of knowledge graph. 

1.5 Industrial Knowledge Graph Engine Based on SPG 

The Knowledge Graph Platform of Ant Group, supported by years of experience in the financial 

industry, has developed a semantic framework based on property graph called Semantic-enhanced 

Programmable Graph (SPG). It creatively integrates the structural nature of Labeled Property Graph (LPG) 

with the semantic nature of RDF, overcoming the challenges of industrial implementation faced by 



Semantic-enhanced Programmable Knowledge Graph (SPG) White paper 

 8 

RDF/OWL's semantic complexity while inheriting the advantages of the simplicity of LPG's structure and 

compatibility with big data systems. 

Firstly, SPG provides a clear definition of knowledge in the digital world. Knowledge is the 

accumulation of human exploration in the material and spiritual world, but how should machines perceive 

knowledge in the digital world? SPG defines the concept of knowledge in the digital world through formal 

description and objective facts. In conjunction with Figure 5, SPG provides a formal definition from three 

dimensions: 

(1) Domain Type Structure Constraint: In the objective world, every entity (Thing) belongs to at 

least one type (Class), and the digital world follows the same principle. Based on SPG, the Domain Model 

Constrained (SPG DC) provides a constraint on the domain structure type, enabling automatic classification 

of knowledge subjects and hierarchical organization from dynamic spatiotemporal to static common 

knowledge. 

(2) Uniqueness of Instances within a Domain: In the objective world, there are no two identical 

entities, and the digital world should be the same. However, due to issues such as data duplication in the 

digital world, caused by multiple sources and data copying, data redundancy and repetition are common. 

SPG Evolving utilizes the capabilities of entity linking, concept standardization, and entity resolution 

provided by the SPG Programming (Knowledge Construction SDK) framework. It combines natural 

language processing (NLP) and deep learning algorithms to enhance the uniqueness level of different 

instances within a single type (Class), supporting continuous iteration and evolution of the domain 

knowledge graph. 

(3) Logical Dependencies between Knowledge: In the objective world, everything is connected to 

other things, and there are no isolated entities, which holds true in the digital world as well. SPG Reasoning 

utilizes predicate semantics and logical rules to define dependencies and transitivity between knowledge, 

providing a programmable symbolic representation to facilitate machine understanding. 

 
Figure 5: SPG Knowledge Semantic Framework 
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SPG fully integrates the advantages of LPG and is compatible with big data systems. The knowledge 

engine built on SPG seamlessly connects with the big data architecture during the knowledge construction 

phase, providing a framework of knowledge construction operator to facilitate the transformation from data 

to knowledge. During the storage phase, it can adapt to property graph to fully leverage their storage and 

computational capabilities. During the reasoning phase, it is formalized as KGDSL (Knowledge Graph 

Domain Specific Language), which provides a machine-understandable symbolic representation to support 

downstream rule reasoning, neural/symbolic fusion learning, KG2Prompt collaborates with LLM for 

knowledge extraction/reasoning, and more. Additionally, through a layered architecture, the construction of 

a new domain knowledge graph only requires defining the schema, preparing the data, and developing 

construction/reasoning operators. 

The knowledge graph technology is still in a period of rapid development and at a critical turning point 

in terms of technology. A unified technical framework can significantly lower the application threshold and 

promote the prosperity of the ecosystem. Therefore, this whitepaper focuses on the fundamental issue of 

enterprise-level knowledge management and deduces the full lifecycle of knowledge management, 

knowledge construction, and knowledge reasoning. The goal is to achieve an industrial-level, portable 

knowledge representation and engine framework. As mentioned earlier, Labeled Property Graph (LPG) has 

become the preferred choice for most enterprise knowledge modeling due to their unique compatibility with 

big data architectures. This whitepaper also derives the semantic capabilities required for enterprise-level 

knowledge management from practical business issues. 
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Chapter 2 Challenges of Knowledge Management base on 

Labeled Property Graph 

In enterprise-level knowledge graph applications, as discussed in Chapter 1, Labeled Property Graph 

(LPG) is preferred for domain knowledge graph modeling due to its efficiency and compatibility with large 

data systems. it enables the rapid realization of business value. While the LPG-based knowledge construction 

has lower initial costs, as business rapidly grows and the volume of knowledge increases, the shortcomings 

of LPG become increasingly evident due to the lack of knowledge semantics and management capabilities. 

Firstly, the evolution of knowledge models becomes increasingly challenging, with schemas becoming more 

complex. Secondly, the flexibility of the node/edge model leads to redundant type creations and repetitive 

data preparation, making it difficult to maintain consistency and rationality among different relations / 

properties. Thirdly, the naive property/relation model is insufficient to depict the intrinsic semantics of 

entities and the semantic dependencies between them, resulting in significant obstacles to the continuous 

iteration and upgrading of knowledge graph projects. When the scale becomes unmanageable, new projects 

have to be created to rebuild schemas and graph data. Additionally, a large amount of hard-coding is required 

during the business application phase to achieve semantic parsing and alignment. This chapter combines two 

business cases, namely, risk mining knowledge graph and enterprise causal knowledge graph, to introduce 

the background and main pain points of business application and summarize the related issues. Next, in 

Chapters 3/4/5/6/7, we will attempt to propose solutions. Finally, in Chapter 9, we will provide two complete 

SPG-based solutions, aiming to leverage the advantages of LPG while avoiding its drawbacks, and providing 

efficient semantic modeling and knowledge management tools for enterprise-level knowledge graph 

applications. 

2.1 Typical Case 1: Risk Mining Knowledge Graph 

To achieve the primary business objectives of the risk mining knowledge graph, we aim to construct 

user-related risk profiles and associated networks for devices, media, transactions, and other relevant factors. 

Based on explicit or implicit associations, we identify individuals involved in the risky activities and 

implement risk control measures. Taking the app network risk prevention and control as an example, a 

particular app is found to be involved in risky activities such as gambling, pornography, and fraud. The 

following two objectives are expected to be achieved through the associated network of this risky app: (1) 

Identify the individuals behind the risks and apply corresponding risk control strategies based on the mining 

clues. (2) Discover other undetected risky apps and prevent the spread of the risks. 

However, in practice, individuals involved in risky activities often disguise or hide their behaviors. 

They may use a large number of virtual devices, virtual IPs, or virtual identities, which are concealed among 

normal users. Therefore, this chapter will provide examples using a portion of the data listed in Tables 3, 4, 

5, and 6 to illustrate the problems encountered in current LPG-based knowledge management. In the given 

example, the app (denoted as “** Entertainment”) should be identified as a gambling app developed by 
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“Wang Wu”. “Li Si” should be recognized as the boss of the gambling company B, and “Zhang San” and 

“Li Si” are the same individual. 

Table 3: Basic Information of User Entity  

 

Table 4: Basic Information of the Shareholding Relation 

 

Table 5: Basic Information of the Application Entity 

 

Table 6: Transfer Relation 

 
There is a significant gap between the expression of data and the business expectations. This is 

manifested in the following ways: 

• Difficulty in representing deep-level associations between different entities: It is challenging to 

directly derive the relations between applications and users, as well as the associations between 

different applications, from the data structure. 

• Alignment of different characterizations of the same entity: Natural persons and users cannot be 

directly equated. For example, in this case, the users “Zhang San” and the one labeled as a 

gambling boss may refer to the same individual. 

In business practice, although there may not be direct associations between applications and users, or 

between different applications, indirect associations can often be discovered through intermediaries such as 

devices or certificates. Similarly, relations between users can be explored through methods like shared 



Semantic-enhanced Programmable Knowledge Graph (SPG) White paper 

 12 

phones or devices. To cope with such complex network relations, the knowledge graph typically evolves as 

follows: 

Step 1: Transforming tabular data into property graph representation. 

 
Figure 6: Building the Knowledge Graph by Directly Mapping Tabular Data to Property Graph 

Figure 6 illustrates the mapping of tabular data to the data structure of the knowledge graph. At this 

stage, it is possible to derive the relations between risky applications and risky individuals based on multi-

hop relations. However, further analysis and judgment by business experts are still required to directly 

achieve the business objectives, as depicted in Figure 7. The textual structure of entity instances in both 

Figure 6 and Figure 7 is as follows: Type / PropertyName = PropertyValue. 

 
Figure 7: Knowledge Graph Structure Derived through Implicit Inference to Meet Business Expectations 

The data structure of the knowledge graph required by the business is typically different from the 

original graph data. The original graph data represents objective basic data, while the data required by the 

business is based on the mined associations derived from the objective data. These associations need to be 

re-integrated into the original data. To uncover these implicit relations, business experts formulate a series 

of rules, such as rules for determining the same user, rules for user-app ownership, and rules for app 

developer relations. For example, if two users use the same phone number or device, they are considered to 

have a “same phone” or “same device” relation. If a user has a controlling relation with a legal entity, the 

app released by that legal entity is considered to be owned by that user. If a user has multiple devices that 
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have the same app installed, the user is considered to be the developer of that app. By applying these rules 

and performing rule calculations using external big data systems, the required data structure for the 

knowledge graph is obtained, including the addition of new types and relations. The original basic 

information definitions are also retained to support better decision-making and risk control in the business 

domain. 

 
Figure 8: Schema Differences after Incorporating Business Rules 

The above example demonstrates a portion of the redundant creations that occur during the business 

decision-making process. In knowledge graph management, extracting complex implicit associations from 

basic facts is a fundamental requirement. However, we need to address how to avoid continuous schema 

expansion caused by the refinement of business objectives and ensure the logical consistency between rule 

calculations and the underlying facts. These are fundamental issues that knowledge management must 

address. 

2.2 Challenges in Applying LPG to the Risk Mining Knowledge Graph  

• The independent data preparation for nodes and edges significantly increases the 

construction cost of the knowledge graph. To construct the required entities and relations for 

the risk mining knowledge graph, data preparation for nodes and edges is required, which is much 

larger than the original four tables. 

• The difficulty in directly reusing different knowledge graphs leads to redundant data 

preparation. In this business case, it is necessary to construct knowledge graph data for fund 

transfers and equity structures. Typically, these data already exist as foundational data in other 

knowledge graphs. 

• Inconsistencies caused by logical dependencies between entities and elements. In the business 

modeling, the new types and relations in Figures 7 and 8 are derived from the existing data in 

Figure 6. When the underlying data changes, such derived data must be synchronized, or else 

inconsistencies in the knowledge graph data will occur. 
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• Continuous expansion of the knowledge graph structure due to the migration and changes 

of business objectives. In this case, implicit associations through intermediaries are used to 

identify risky users behind the applications. However, as risky activities evolve rapidly, there will 

be frequent updates and creation of different entity and relation types. The size of the knowledge 

graph schema and instances will continue to expand, making it difficult to manage. 

Therefore, when constructing a knowledge graph, these challenges need to be considered, and 

appropriate measures should be taken to optimize the data transformation process, improve the reusability 

of knowledge graph, and design the schema to support the expression of logical relations between knowledge, 

thereby enhancing the efficiency of business semantic migration. This helps us build a more efficient, reliable, 

and maintainable knowledge graph system. 

2.3 Typical Case 2: Enterprise Causal Knowledge Graph 

The knowledge management of an enterprise causal knowledge graph focuses more on depicting the 

logical relations of causality, conditionality, hierarchy, and sequentiality between events. Therefore, the 

foundation of an enterprise causal knowledge graph is events. In practical applications, it generally evolves 

from the application of events and graphs to the causal knowledge graph, this evolves capturing production 

and operational events related to the enterprises, extracting key elements of events, establishing the linkage 

between event elements and internal enterprise/industry chain knowledge graph, and constructing causal 

logical chains between risk events and enterprise/industry chain knowledge graph. This allows for quick 

linkage to internal warnings or risk management when external risk events are identified. When a financial 

event occurs, we need to infer the event based on basic facts in order to try to obtain answers to the following 

questions:  

• The nature and impact of the event.  

• The entities involved and the impact on related entities.  

• Whether the associated entities will further generate other impacts and how they will be affected. 

 

Figure 9: Illustration of Event Impact Propagatio 
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For example, let's consider an event where a biotech company is exposed for producing fertilizers with 

severe heavy metal contamination. The extent of the event's significance needs to be further analyzed. When 

analyzing a specific event, analysts need to repeatedly query and gain insights from basic factual knowledge, 

based on their understanding of the event and combining it with common knowledge to draw conclusions 

about the event's impacts. However, various reasoning logic and data are often fragmented and dispersed, 

requiring effective integration and connection. Therefore, there are many unresolved issues in the application 

of knowledge graphs in understanding causality. In the case of this event, it is necessary to analyze the 

impacts on which entities in the enterprise network, the paths and degrees of impact, and whether the impact 

on other entities will give rise to new events, thus further expanding the scope of influence. 

Problem 1: Complex and Diverse Event Classification, Predefined Event Taxonomies Cannot 

Fully Cover Real-World Application Scenarios. 

The traditional approach is to define multi-level event types and construct an event type tree through 

the expertise of business professionals. This involves defining, describing, and classifying events based on 

the understanding of equity markets, fixed income markets, and macroeconomic changes. Different events 

are delineated by their boundaries. Additionally, events can be defined as “changes” in the financial market, 

typically associated with a series of financial indicators. A set of predefined labels in the form of an “event 

tree” is created by business experts, and different financial event propagation networks are built based on 

this tree and historical data. However, such an approach often fails to meet the needs of real-world financial 

markets, primarily due to the following reasons: 

1. Different interpretations of event types. Due to different backgrounds, business experts may have 

diverse understandings of event trees, leading to inconsistencies and variations in their definitions 

of the same events. The boundaries between different event types and events may not be clear. 

2. Static event trees cannot accommodate the dynamic development of the financial market and the 

emergence of new financial event types. Especially after the 2008 financial crisis, the global 

economy entered a new normal, and the domestic economy has shown new features in recent years. 

For example, the COVID-19 pandemic has had a significant impact on the global economy and 

various industries. However, in the existing event trees, it is generally classified under the category 

of “major health security” events, and many business analyses often compare it to the SARS 

outbreak in 2003 to predict future impacts. However, although both are “major health security” 

events, they differ significantly in terms of impact time, scope, and other aspects. 

In conclusion, due to the complexity of financial events, relying solely on a group of business experts 

to predefine events cannot fully cover real-world application scenarios. We need a system to dynamically 

generate derived financial event taxonomies. 
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Problem 2: Multiple Interrelationships Exist Between Events, Such as Causality and Sequence, 

which often Require Dynamic Connection through Entity Networks, Demanding Strong Descriptive 

Capability. 

Due to the complexity of the financial event network, the impact to other events after the occurrence of 

a particular event may vary. This often depends on the differences in entities and relations behind the 

different events, which determine the different directions of impact for each event. 

For example, if Company A's stock price rises due to its expansion of production capacity, and the 

capital market has a positive outlook on its future development, whether the stock price of its competitor, 

Company B, will rise or fall will often depend on various factors, such as market demand, the scale of 

capacity expansion, and the relative market share between the companies and their competitors. Suppose 

Company A is a semiconductor manufacturer and decides to expand its production capacity. For its 

competitor, Company B, this may be good news. If there is strong global demand for semiconductors and a 

tight supply, A's capacity expansion may help alleviate this supply-demand imbalance and stabilize the entire 

market. In this case, as the market environment improves, the competitor B may also benefit from it. The 

logic in this case is: if the demand for the entire industry exceeds supply, any action that increases supply 

may have a positive impact on the entire industry as it helps maintain market stability and prevent price 

surges or other factors that may lead to market instability. On the other hand, if Company A is an automobile 

manufacturer and decides to expand its production capacity, it may have a negative impact on its competitor, 

Company B. In this case, if market demand does not grow, A's capacity expansion may lead to market 

oversupply, triggering price competition. Therefore, for competitor B, this may result in lower sales volume 

and profits, making it a negative news. The logic in this case is: if the supply growth in an industry exceeds 

demand, it will lead to oversupply, potentially triggering price competition, which in turn affects the profit 

levels of all firms. 

In conclusion, due to the complexity of the financial event network, when describing the transmission 

relations between different events, it is necessary to dynamically link them with the relevant entity network 

and build a strong descriptive capability based on it. 

Problem 3: How to better describe and analyze the propagation of event impacts? 

Due to the complexity of financial event inference, it is necessary to analyze the propagation effects of 

events from two perspectives: the propagation in entity networks and the propagation in event networks. 

Taking the example of “Company A announces bankruptcy/bond default”, we can analyze the event's 

propagation effects from these two angles: 

1. Propagation in entity networks: Company A's bankruptcy will directly impact its shareholders, 

especially major shareholders, whose financial conditions may be affected, thus further 

influencing their investments in other companies. Additionally, Company A's competitors may 

benefit from its bankruptcy, potentially gaining market share. Similarly, suppliers and creditors of 
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Company A may suffer economic losses due to the bankruptcy. These impacts will propagate in 

the entity network, affecting other relevant entities. 

2. Propagation in event networks: Company A's bankruptcy may serve as a cautionary example for 

other companies, preventing similar occurrences. For example, it may enhance risk awareness in 

related industries or markets, prompting companies with issues in financial management and risk 

control to learn from it and make necessary improvements. The impact of this event will propagate 

in the event network, forming new events and affecting other entities. 

These two propagation processes are not isolated but intertwined. For example, Company A's 

bankruptcy may draw the attention of its competitors and influence their decision-making, thereby triggering 

new events in the entity network. Simultaneously, this new event may also become a new node in the event 

network, further influencing the behavior of other companies. 

Problem 4: The process of financial event inference is not sufficient solely based on relation 

network, it often requires the use of extensive external data for analysis. 

In 2019, a dam collapse incident occurred at the Vale of Brazil, resulting in an increase in iron ore 

prices, which in turn led to a rise in steel production costs. Within the entire chain of event impacts, some 

companies involved in industry competition benefited from this incident, as their profits rising. However, it 

also had a negative impact on the downstream of the industry chain, as rising costs led to a decrease in profits. 

 
Figure 10: Transmission Diagram of the Impact Chain of the Vale Dam Collapse Incident 

The entire iron ore industry chain starts with iron ore extraction, and Vale S.A. is an important 

participant in the global mining industry, with its operations significantly impacting global iron ore supply 

and prices. It is precisely because of the company's importance in the global iron ore industry chain that the 

dam collapse incident led to a global increase in iron ore prices. 
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China, as a major infrastructure country and the largest consumer of iron ore globally, heavily relies on 

the global iron ore market. Therefore, a major incident in a Brazilian company can lead to an increase in raw 

material prices in the iron ore industry chain and successfully transmit the event to the domestic capital 

market. On the other hand, after the import of iron ore, it goes through the process of smelting, refining in a 

converter, and casting to produce pig iron. Pig iron is then further processed into various steel products, such 

as long products (rebars, wire rods) and flat products (hot-rolled coils, cold-rolled coils), which are used in 

industries such as automobiles, appliances, and shipbuilding. Additionally, there are also pipe products 

(seamless steel pipes, welded steel pipes), special steel, high-strength steel, and other different products. 

Various Chinese listed companies are involved in these upstream and downstream segments of the industry 

chain, such as Baosteel, Baotou Steel, and Fangda Special Steel. The specific transmission logic and impact 

need to be analyzed in conjunction with the details of the arguments, including the following aspects: 

1. Whether the company engages in hedging in the derivatives market, and the value of hedging 

transactions. 

2. The market share of the company's products and the competition landscape in the segmented 

industry. Generally, the competition landscape for special steel is considered better than ordinary 

steel. 

3. Whether the company has the ability to transfer upstream production pressures to downstream, 

and whether there are upstream alternatives domestically. 

Only by dissecting the above arguments into finer granularity and introducing relevant external data 

can a complete transmission network be constructed. 

2.4 Challenges in Applying LPG to the Enterprise Causal Knowledge 

Graph 

In general, the analysis of event impacts is based on the analyst's understanding of the event, repeatedly 

querying and gaining insights from basic factual knowledge, and combining it with common-sense 

knowledge to draw conclusions about the event's impact. It can be seen that the entire process of event 

inference is outside of the knowledge graph, as basic factual knowledge lacks common-sense and reasoning 

logic, and a pure event knowledge graph cannot express the context of the event. In practical applications, 

in order to complete event inference, various logics have to be scattered in various places outside of the 

knowledge graph, and reasoning is performed through various external plugins. Such methods inevitably 

bring many application issues to enterprise causal knowledge graph: 

• Contradiction between the static nature of predefined schemas and the dynamic nature of 

events. Events are often complex and diverse, and if a strongly schema-constrained property graph 

is used, it is generally impossible to predefine events. It can only be tailored to specific scenarios. 

If a schema-free property graph is used, the overly lenient mode will result in increasing data 

management and usage costs. 
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• Inability to express the entire event transmission context. Since the knowledge graph only 

contains basic facts without the definition and transmission relations of the events, it is impossible 

to establish expert rules for event analysis, let alone represent the entire context of event 

propagation. To express the event context, it is necessary not only to illustrate the evolutionary 

process of events over time but also to combine abstract entities to express the relevance of events 

within the event domain through abstract levels. 

• Separation of the knowledge graph and reasoning logic makes it difficult to evaluate the 

correctness of the reasoning logic and hinders the reuse of reasoning logic. Due to the 

separation of schema and reasoning logic, when maintaining basic factual data, it is impossible to 

assess the impact on the correctness of external reasoning logic. For example, changes in data such 

as property names or deleted relations may cause the failure of reasoning logic that exists outside 

of the knowledge graph. Such problems are unavoidable in traditional event knowledge graph. 

Furthermore, reasoning logic may consist of a combination of query statements and scripts, and 

these contents may be managed in analysts' local storage, making it difficult to reuse reasoning 

logic that is highly generic. 

• Poor interpretability of the conclusions derived from event propagation reasoning. Since the 

external reasoning logic may be a combination of multiple query statements and scripts, it is not 

possible to visually observe the deductive process from the cause to the result when the entities 

affected by the event are calculated. In this case, interpretability becomes a black box, and 

understanding the query statements and scripts is necessary to comprehend the reasoning logic. 

2.5 Complexity and heterogeneity caused by the coupling of structural 

definition and semantic representation in knowledge modeling 

RDF/OWL is a syntax-level representation framework, leading to a higher learning cost. In traditional 

ontology modeling in knowledge engineering, a classification system needs to be defined through description 

logic syntax. The labeled property graph (LPG), has simple syntax elements but only represents the data 

structure. None of the above methods address the problem of “design patterns” themselves. In the process 

of practical business implementation, the coupling of data structure definition and knowledge semantic 

ontology design in the modeling process leads to difficulties in decision-making. The schema design of 

domain knowledge graph is subjective, where entities of the same type are defined differently due to naming 

and granularity differences. Heterogeneity issues caused by different schema definitions are prevalent, 

hindering the dissemination and reuse of knowledge, and further exacerbating knowledge inconsistency. 



Semantic-enhanced Programmable Knowledge Graph (SPG) White paper 

 20 

2.5.1 Repetitive construction issue caused by differences in entity type granularity due to 

different business goals 

In the application of the risk mining knowledge graph, there is a need to classify the “Person” entity 

and determine whether they are involved in risky activities. The risky personnel can be further divided into 

categories such as gambling individuals, bookmakers, money launderers, and so on, as shown in Figure 11. 

 

 
Figure 11: Entity granularity expansion in the modeling process of the risk mining knowledge graph 

Even within the same knowledge graph project, different internal demands may lead to the creation of 

new entity types. The requirement for an entity to have multiple types is often resolved by creating redundant 

new types. This results in increasingly complex schemas. At a certain stage of business evolution, there may 

be a need to start from scratch and redesign the knowledge graph. Taking the risk mining knowledge graph 

as an example: 

• Demand for analyzing different apps: Black industry groups produce a large number of apps 

through batch repackaging, similar to an app factory. It is necessary to classify and refine the types 

of apps to address different risk control strategies. 

• Demand for on-demand refinement of entity types: When investigating black industry groups, 

some individuals may be associated with bookmakers, fraud activities, and other specific roles. 

This leads to the creation of additional types such as “GamblingPerson” and “FraudPerson”. As 

the business evolves, the classification of entities continues to become more refined. 

These issues are often strongly correlated with specific business scenarios, and change as the business 

evolves, and different scenarios arise. From the data management perspective, these apps or persons may 

use the same or similar data structures. However, from the business logic perspective, there is a need for 

semantic-level type differentiation. The mixture of schema/ontology modeling from different perspectives 
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leads to continuously increasing costs for user understanding and maintenance. The redundant construction 

of entity types also increases the preparation and maintenance costs of data tables. 

2.5.2 Different knowledge graph defining the same entity differently 

Taking fund flow as an example (cross knowledge graph), as shown in Figure 12. 

 
Figure 12: Illustration of cross knowledge graph fusion 

 
In the risk mining knowledge graph, we focus on the transactional relations between users and 

companies to identify the masterminds behind illegal activities. In the fund knowledge graph, our focus is 

on analyzing the flow of funds. Therefore, we deploy tracking and control strategies for the involved 

financial products and treat them as more granular entity types. In both of these scenarios, we deal with 

transactional relations to meet our respective business requirements. However, there are two problems: 

• Different businesses handling the same data in a similar way result in the inability to consolidate 

common requirements and share accumulated business experiences. Each newly business scenario 

needs to start from scratch to prepare the data, increasing the threshold for business usage. 

• Knowledge sharing across knowledge graphs. For example, the “BankCard” entity exists in the 

fund knowledge graph. However, it cannot be securely used for business needs such as anti-money 

laundering or anti-fraud. 

2.5.3 Difficulties of making the choice between defining as properties or relations due to 

construction costs 

In the labeled property graph model, each entity and relation type require independent data preparation. 

With M types of entities and N types of relations, due to differences in property quantities, M + N message 

structures or data tables need to be prepared to complete the knowledge graph construction. Leading to high 

data preparation costs. As the demand for knowledge graph-based analysis increases, this cost continues to 
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escalate. All entities and relations defined in the labeled property graph require separate data preparation, 

forcing businesses to balance between current simple applications and future scalability. When properties 

are directly constructed as relations, it increases the complexity of simple application usage, such as the lack 

of property filtering. 

Consider a simple question: connecting devices that use the same Wi-Fi. As shown in Figure 13, our 

usual approach is as follows: (1) Construct entity types for Device and Wi-Fi, and a relation type “Device -

[useWifi]-> Wi-Fi”. (2) Prepare data separately for the entities and relations mentioned above, and generate 

unique entity IDs for Wi-Fi. 

 
Figure 13: Connecting devices using the same Wi-Fi 

This significantly increases the complexity of data preparation, as each entity and relation type require 

separate data preparation. In extreme cases, if each type requires its own data table, the number of tables 

increases from 2 to 6. This results in a larger workload for data cleansing. Assuming there are “m” entity 

tables, with an average of “n” property columns per table that need to be transformed into relation, we would 

need to generate a total of “m*(2*n+1)” tables. This raises the threshold for user usage. 

 
Figure 14: Cost escalation due to entity/relation data preparation 

2.6 Insufficient expressive power for representing diverse and 

heterogeneous domain knowledge 

During the implementation of knowledge graph in the financial domain, there is a need for 

heterogeneous representations of temporal and spatial aspects, such as user behavior, industry events, macro 
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events, and so on. For example, the enterprise causal knowledge graph needs to express the temporal and 

spatial relations of individual events as well as model simple or complex logical relations such as causality, 

succession, co-occurrence, and structure. It is difficult to achieve lossless expression using RDF/OWL, and 

although the introduction of the HyperGraph [12] can alleviate some of these issues, it does not integrate 

well with the RDF/OWL system, thereby increasing the cost of user application and understanding. 

2.6.1 Representation issues of temporal and spatial structures in events 

Representing the multi-element structure of events is also a problem of lossless representation, similar 

to the HyperGraph. It expresses the temporal relations of various elements in a multi-element structure, 

where events are temporary associations formed by these elements due to certain behaviors. Once the 

behavior ends, the association disappears, as shown in Figure 15. 

 
Figure 15: Representation of the HyperGraph [13] 

The representation method of RDF-Star [14] extends the modeling capabilities of RDF for such 

scenarios, and in 2022, the W3C established the RDF-Star Working Group to further enhance RDF. Taking 

the application of the enterprise causal knowledge graph as an example, the simple structure of a safety 

production event in a company is represented as shown in Figure 16. 

 
Figure 16: Extension of multi-element relations based on RDF-Star triples 



Semantic-enhanced Programmable Knowledge Graph (SPG) White paper 

 24 

In the representation format of “<s, p, o>” triples, the first step is to extend it with a time element to 

“<s, p, t, o>” in order to further represent temporal constraints, as shown in the example “<Company, 

Occurrence, OccurrenceTime, SafetyRiskEvent>”. However, event associations are often complex 

combinations of multiple elements. Breaking down the different aspects of an event into independent 

elements is necessary, as shown in Figure 16. In the construction of domain knowledge graph based on 

labeled property graph, which has been developed for many years, there is no solution for how RDF-Star 

can be applied. We need the representation capabilities of a spatiotemporal event hypergraph based on 

labeled property graph in order to build the event representation and reasoning capabilities required for 

enterprise causal knowledge graph. 

2.6.2 Problems with causal succession, composition, structure, and logical dependencies 

The enterprise causal knowledge graph have an ontology layer, which means that there are not only 

horizontal associations between events and entities, but also vertical associations from specific to general or 

from general to specific. Horizontal associations involve roaming, association, and analogy, while vertical 

associations involve induction, deduction, and evolution. Therefore, the corresponding architecture should 

carefully consider these situations when making decisions. In terms of the definition and instantiation layer, 

there are four components: abstract entities, concrete entities, abstract events, and concrete events. They are 

physically connected as a single graph, but logically can be divided into entity domain and event domain 

horizontally, and ontology domain and instance domain vertically, forming a so-called four-quadrant 

architecture [15], as shown in Figure 17. 

 
Figure 17: Four-quadrant architecture for enterprise causal knowledge graph 

The main challenge is the coexistence of event models and causal models. Common event graphs only 

represent the relational connections between bare events without their arguments. However, in enterprise-

level applications, event instances contain richer information. For example, in an enterprise risk event, it 

may include information about the entities involved, the industry involved, and whether the production is 

halted. These additional details can complement the bare events, and both aspects are mutually beneficial. 

We need the coexistence of event models and causal models. The event model represents a spatiotemporal 

multi-element hypergraph structure, while the causal layer involves reasoning about causality, succession, 

and logical combinations. For example, when land prices increase, it leads to an increase in fiscal revenue. 

The combination of “Land prices in Province A increase” is a binary relation between an administrative 

entity and an abstract event, and should also lead to the deduction of “Fiscal revenue in Province A increases”. 
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The increase in fiscal revenue then cascades down the impact chain. Similarly, there are expressions of 

hierarchy between arguments, such as “Interest rate increase” and “Yen interest rate increase”. Ultimately, 

this can form a specific path of “Event → Abstract entity (superior) → Abstract entity (inferior) / Specific 

entity → Event”. 

2.7 Consistency and propagative reasoning issues caused by logical 

dependencies between knowledge 

In the domain knowledge graph, there are implicit logical dependencies between different properties 

and relations. Applications in financial risk control, for example, require the establishment of logical 

dependencies between property elements to construct the automatic propagation capability of risks. In the 

LPG model, it is necessary to prepare all relations and properties. However, inconsistencies may arise due 

to factors such as computational timeliness and logical correctness. These issues become more apparent 

when dealing with logical dependencies between multiple elements, increasing the complexity of pre-

computation/construction. 

2.7.1 Inconsistency and redundancy construction issues caused by logical dependencies 

in data 

Figure 18 provides a simple example of the issue of properties errors caused by implicit logical linkage 

across entities in the risk mining knowledge graph. 

 
Figure 18: Implicit logical association 

Looking from the perspective of discovering risky activities, a rule is defined: “When an app released 

by Company A is flagged as black, Company A should also be flagged as black”, as shown in Figure 18b. 

Both the company and the app have a “flag” property. However, when App A is reported and identified as 

black, Company A is still marked as white. In this case, data inconsistency occurs. It requires waiting for the 

completion of external system calculations before updating, as shown in Figure 18c, or manual intervention 

to address the issue. Incorrect data or delayed updates can result in incorrect conclusions and the knowledge 

graph being unavailable during the correction period. 
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2.7.2 Problem of obstructed risk propagation/transmission due to logical dependency 

transfer 

In Section 2.3, the dam collapse incident at Vale in 2019 resulted in a rise in raw material prices, 

subsequently causing an increase in production costs for downstream companies, ultimately leading to a 

decline in their profits. From a causal perspective, this event originated from a production accident at a 

company and propagated through the industry chain, triggering financial risks for downstream companies. 

During the propagation process, it is not a simple diffusion of relations but rather a causal transmission with 

logical dependencies. Moreover, each instance in the propagation chain still retains the key elements of the 

initial event. These complexities are challenging to capture in an event knowledge graph based on 

foundational facts, as the presence of logical dependencies can hinder the propagation of events. To construct 

the propagation of event risks, it is necessary to consider the triggering mechanisms, the transmission of 

event impacts, and the rules of transmission. 

 
Figure 19: Impact propagation of events between instances 

• Event triggering mechanism: Structured event elements are obtained based on the extraction of 

external relevant information or monitoring of the key data changes, resulting in event instances. 

Based on specific event instances, corresponding event propagation rules are triggered. 

• Event impact propagation: Event impacts are propagated directly along relations. For example, 

in the enterprise causal knowledge graph, the impact of a company's safety production accident is 

propagated to the industry which it belongs to, based on the industrial characteristics of the 

occurrence subject in the event instance. The relation transmission of events can express which 

conditions allow an event to be transmitted to another target event. These conditions can utilize 

various properties of entities and relations obtained through query of associated subgraphs in the 

transmission path, such as determining whether the occurrence subject is a listed company, the 

industry of the company, and downstream industries.  

During the propagation process, the logical judgment can reference the relevant properties of all 

preceding entities/relations in the current judgment condition's position. As shown in Figure 20, the “Price 

increase” event needs to reference the industry property of the subject in the “Vale dam collapse incident”, 
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the “Cost increase” event needs to reference the downstream industry property of the “Price increase” event, 

and the “Profit decrease” event needs to reference the industry property of the “Cost increase” event. 

 
Figure 20: Concept induction and impact propagation based on rules 

2.8 Graph Construction and Evolution Problems for Incomplete Data 

Sets 

The construction of enterprise-level knowledge graph is often based on incomplete data sets, with 

constantly changing sources and construction strategies. Continuous iterations are needed to improve 

coverage, accuracy, and reduce conflicts and errors. This incompleteness typically includes two aspects: the 

heterogeneity of data sources and the heterogeneity across multiple knowledge graphs. The heterogeneity of 

data sources manifests as different instances and properties of the same entity type coming from different 

data sources. It requires addressing disambiguation, alignment, and fusion of different data sources, as well 

as evaluating and selecting data sources based on different confidence strategies to achieve traceability and 

quantifiability. The heterogeneity across multiple knowledge graphs arises from the presence of duplicate 

definitions of the same entity type in different domain knowledge graphs, which need to be merged and 

linked across knowledge graph based on business domain requirements and data differences. 

2.8.1 Reliable Fusion and Trustable Traceability of Heterogeneous Data from Multiple 

Sources in Graph Construction 

In enterprise knowledge graph applications, different properties and relations of the same entity type 

may come from different data sources. The common practice to construct entities based on heterogeneous 

data sources is entity linking and entity resolution. Entity linking involves finding an accurate and unique 

entity ID for each data update, while entity resolution merges the updated properties and achieves the 

consolidation of the properties and relations. As shown in Figure 21, in the enterprise causal knowledge 

graph, the construction process of the enterprise entities, involves the merging of various data sources, such 

as company announcement extraction, basic business information, and court announcements. 

 



Semantic-enhanced Programmable Knowledge Graph (SPG) White paper 

 28 

 

 
Figure 21: Entity updates based on heterogeneous data sources 

The definition of an enterprise entity is generally represented as “<Company, legalPerson, String>”. In 

practical applications, when conflicts occur in property values, decisions on how to retain or update them 

need to be made based on dimensions such as source type (sourceType) and algorithm prediction scores 

(score). For example, the confidence level of basic business information is the highest, so it needs to be 

unconditionally overridden. However, the timeliness of updates for business information and company 

announcements may not be consistent. There may be cases where company announcements have been 

captured but the business information has not been synchronized. In such cases, secondary descriptive 

information needs to be preserved on property elements. This can be formally represented as: “<Company, 

legalPerson, String>” as p, with the addition of “p.sourceType”, “p.score”, and the recording of the coverage 

rules for p in the schema. For example, p.fuseRule = "sourceType == 'business information'; score > p.score". 

2.8.2 Entity Alignment, Real-time Updates, and Fusion/Traceability Problems in Cross- 

Graph Fusion 

The problem of cross-graph fusion is similar to 2.5.2. When merging user entities from the risk mining 

knowledge graph and the fund knowledge graph, it is necessary to determine how to preserve the properties 

and relations in the new “FuseEntityType”. 

 

  
Figure 22: Stable fusion and traceable update problems in cross-graph fusion 
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In order to ensure that updates to properties/relations of “Person” and “UserAccount” can trigger timely 

updates to “FusedUser”, while forwardly ensuring the stability of the results and backwardly supporting 

interpretability and traceability of the results, we need to extend properties and relations, and record 

supplementary properties for fusion and update strategies. These strategies are then executed during the 

entity update stage. For the iterative evolution of knowledge graph based on incomplete data sets, the 

knowledge modeling framework needs to address the following problems: 

• The properties/relations can carry supplementary properties: These supplementary properties are 

used to describe the source, confidence, relevance, author, and other relevant asset information of 

the properties/relations.  

• The properties/relations can define update strategies: Support for executable rule expressions is 

needed to define selection and prioritization strategies for the properties/relations. This ensures 

the stability of results even when data from the different sources arrive randomly. 

• The entity types can be bound to entity linking operators: In industrial-level applications, many 

data sources do not provide standardized IDs. Therefore, we need to use entity linking strategies 

such as text matching and spatiotemporal clustering to find the target entity ID. Support for binding 

entity linking operators to target entity types is needed to ensure the execution of the same entity 

linking operator when different source data updates occur, thus ensuring the result is stability. 

2.9 Summary of Problems with Semantic-less, Non-programmable 

Labeled Property Graph 

Firstly, knowledge management is associated with the entire lifecycle of the business, requiring the 

ability to evolve iteratively and support continuous business iteration while effectively avoiding 

combinatorial explosion and duplicate construction. Secondly, knowledge management faces the complex 

problem of modeling knowledge from incomplete data sets, heterogeneous data sources, and multiple 

business expert perspectives. This requires the ability to implement differentiated perspectives and 

lightweight alignment of heterogeneous data sources through programmable paradigms, thereby reducing 

system complexity. Lastly, knowledge management needs to establish necessary knowledge hierarchies and 

classification systems to achieve effective linkage, induction, and deduction between different levels. This 

enables automatic extraction of static common knowledge to support efficient cross-business reuse and 

effective accumulation of core assets. The following chapter 3 and 4 will provide detailed explanations of 

the semantics-enhanced programmable framework (SPG). 
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Chapter 3 Semantic Enhancement Programmable 

Framework (SPG) 

To address the issues mentioned in Chapter 2, we have developed the semantic representation 

framework (SPG) based on property graph, taking into account the characteristics of enterprise-level 

business scenarios. This framework defines and represents knowledge semantics from three aspects. Firstly, 

SPG provides a formalized representation and programmable framework for “knowledge” to be defined, 

programmed, and understood by machines. Secondly, SPG enables compatibility and progression between 

knowledge hierarchies, supporting the construction and continuous iterative evolution of the knowledge 

graph in industrial scenarios with incomplete data. Lastly, SPG effectively bridges the gap between big data 

and AI technology systems, enabling efficient knowledge transformation of massive data to enhance data 

value and application value. With the SPG framework, we can construct and manage knowledge more 

efficiently, while better supporting business needs and application scenarios. Due to its scalability and 

flexibility, the SPG framework allows for quick construction of domain models and solutions for new 

business scenarios by extending domain knowledge models and developing new operators. 

3.1 The semantic model of SPG 

The overall semantic model of SPG is illustrated in Figure 5 of the Chapter 1, and briefly described in 

Chapter 1 as well. Firstly, SPG formally defines knowledge from the following three dimensions: 

1) Domain Type and Structure Constraint: In the objective world, there are no things without 

domain types. However, in the digital world, there are numerous text/numeric representations 

without domain types. SPG DC requires that everything must have a distinct domain type (Class) 

and the domain type must have its own inherent structural representation, including properties, 

relations, etc., which are associated with other things through relations. Additionally, based on the 

principles of dynamic to static, specific to general, and instance to concept in domain knowledge, 

SPG DC classifies domain types into Event HyperGraph, Entity, and Concept. This facilitates 

efficient knowledge classification and reuse in business and achieves automatic hierarchical 

separation of knowledge from dynamic to static. For detailed information, please refer to the 

descriptions in sections 4.1.1 and 4.2. 

2) Unique Instance within the Domain: In the objective world, there are no two things that are 

exactly the same. However, in the digital world, there are numerous instances of the same thing 

due to data copying, different descriptive perspectives, and multiple heterogeneous sources. To 

ensure consistent representation between the digital world and the objective world, SPG requires 

that every instance within a domain type must be unique to guarantee the accuracy and consistency 

of the knowledge. To achieve this, SPG Evolving provides programmable capabilities for entity 

linking, property standardization, and entity resolution through SPG-Programming. Users can use 

built-in or self-developed algorithms (operators) to improve the uniqueness of instances. More 
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detailed descriptions are expected to be released in the SPG White Paper 2.0, and relevant 

information can be found in Chapter 7.2: SPG-Programming. 

3) Logical Dependency between Knowledge: In the objective world, there are no things that are not 

related to other things. We often understand things through their connections with other things. 

These connections represent the intrinsic characteristics of things as well as the logical/physical 

relations with other things. They encompass both the general commonality of inductive significance 

and the specific uniqueness at the instance level. SPG defines dependencies between knowledge 

through the SPG Reasoning predicate/logic system, including logical dependencies and inference 

between properties, relations, types, etc. Additionally, SPG defines basic predicate primitives 

through the predicate system to support knowledge reasoning and inference. This allows for better 

handling the associations and dependencies between knowledge, and supports modeling and 

analysis of the complex business scenarios. Detailed descriptions can be found in sections 4.3 and 

4.4. 

Furthermore, the SPG framework achieves compatibility and progression between knowledge 

hierarchies to adapt to industrial-level knowledge graph. In practical applications, businesses often face the 

objective reality of incomplete datasets, incomplete expert experiences, and incomplete understanding of the 

knowledge graph. On one hand, businesses expect to quickly realize business value through the knowledge 

graph. On the other hand, the coverage of business data and the experience of the knowledge graph are also 

incomplete, requiring continuous business iterations to gradually deepen the understanding and application 

of the knowledge graph. However, RDF/OWL requires complete knowledge exchange, which is inconsistent 

with the objective reality of practical application scenarios. To address this issue, SPG requires compatibility 

and progression from left to right when defining knowledge representation. Users can choose the simplest 

SPG Compatible mode to directly construct the representation of property graph from the big data system, 

or they can enhance the semantic clarity of the subject model by adding SPG DC domain model constraints. 

Additionally, users can continuously improve the uniqueness of subjects and the semantic associations 

between subjects by adding entity linking and entity resolution operators through SPG Evolving. Finally, a 

symbolic representation of knowledge is constructed through complex predicate and logic systems. Through 

the layered compatibility and progression of SPG, the cost of implementing knowledge graph business can 

be greatly reduced. In the process of knowledge graph application, users can gradually improve and optimize 

the domain knowledge graph by selecting different modes and operators based on their own needs and data 

conditions. 

In conclusion, the SPG framework effectively bridges the gap between big data architecture and 

knowledge systems, enabling the automatic construction of knowledge systems from big data systems. 

Specifically, by employing the ER2SPG approach to transform data from the big data system into the SPG 

knowledge graph representation, seamless integration of data and knowledge can be achieved. Furthermore, 

the SPG-Reasoning component enables the construction of a machine-understandable symbolic system, 

which facilitates the linkage with deep learning models through knowledge constraints, logical symbols, etc., 
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thereby providing more possibilities for knowledge graph applications. Additionally, the SPG framework 

aims to establish a symbolic linkage with large language models (LLMs) through SPG-Reasoning. By 

mapping the output of LLMs into the symbolic representations and inputting the symbolic representation of 

the knowledge graph into the LLMs, better integration and collaboration between knowledge and models 

can be achieved, enabling efficient interaction and co-evolution between knowledge and models. This is of 

great significance for achieving more intelligent application scenarios. 

In summary, the SPG framework enables the automatic transformation and application of data into 

knowledge by bridging the big data architecture and constructing a machine-understandable symbolic system. 

In the future, the SPG framework will continue to leverage its advantages, explore more application scenarios, 

and establish closer linkage with LLMs, bringing more possibilities to knowledge graph applications. 

3.2 SPG Layered Architecture 

 
Figure 23: Overall Architecture of the Knowledge Engine based on SPG 

The core objective of SPG is to build a standardized knowledge engine architecture based on SPG, 

providing clear semantic representation, logical rule definition, operator framework (construction, 

reasoning), etc., for the domain knowledge graph construction. It supports pluggable adaptation of the basic 

engines, algorithm services, and the solution construction by various vendors. This section provides a brief 

overview of the overall framework. 

• SPG-LLM: Responsible for the interaction subsystem with LLMs (Large Language Models), such 

as natural language understanding (NL), user instructions, queries, etc. See Chapter 8 for more 

details.  

• SPG-Schema: Responsible for the design of the Schema framework that enhances the semantic 

understanding of the property graph, including subject models, evolution models, predicate 

models, etc. See Chapter 4 for more details.  
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• SPG-Controller: Responsible for the design of the control center subsystem, including control 

framework, command distribution, plugin integration, etc. See Chapter 6 for more details.  

• SPG-Programming: A programmable framework subsystem responsible for the design of the SDK 

framework and compilation submodules, such as knowledge construction, knowledge evolution, 

expert experience projection, knowledge graph reasoning, etc. See Chapter 7 for more details.  

• SPG-Engine: Knowledge graph engine subsystem responsible for the design of the 

integration/adaptation layer for multiple engines, such as reasoning engine, query engine, etc. See 

Chapter 5 for more details. 

3.3 The Objectives of SPG 

We aim to build a next-generation cognitive engine infrastructure based on SPG, as shown in Figure 

24, which represents the overall capabilities. The legend in the figure also indicates the coverage of this 

whitepaper. 

 
Figure 24: Target Architecture of SPG and LLMs Bidi-Driven (Draft) 

This whitepaper, titled “Semantic-Enhanced Programmable Knowledge Graph (SPG) 1.0”, is the initial 

release. It discusses the current pain points and possible solutions in the development of knowledge graph, 

as well as the proposed approach, core capabilities, and overall framework of SPG, as described in Chapter 

2. In the future, SPG will continue to improve the content of the whitepaper, including domain model 

extensions, programmable framework, knowledge construction engine, knowledge reasoning engine, and 

the bidirectional interaction between LLMs and KG. Additionally, SPG will accelerate the open-source 

development of semantic and basic engine frameworks, promoting the industrial implementation of 

knowledge graph. The 1.0 version of the whitepaper will focus on the following topics: 

• SPG Semantic Foundation Framework: Introduces the background of SPG, the core problems 

it addresses, and presents the semantic framework and schema model of SPG through two business 

cases.  
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• SPG Logical Rule Framework: Introduces the logical rule system of SPG and how it organically 

integrates logical rules with factual knowledge based on SPG. 

• SPG Multi-Engine Adaptation Layer: Provides a detailed introduction to the capabilities of the 

adaptation layer, incorporating the adaptation abstractions of SPG2LPG and LPG2SPG, to 

facilitate the efficient integration of the graph storage and the graph computing engines developed 

by various vendors. 

We will continue to update the whitepaper, including versions 2.0 and 3.0. In this release, certain topics, 

such as the programmable framework and knowledge reasoning, have only been briefly introduced. In the 

future, we will focus on these topics in separate discussions. We will also continue to explore and make 

breakthroughs in the bidirectional interaction between SPG and LLMs. The release plan for the future of 

SPG is outlined in the Chapter 11. 
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Chapter 4 SPG-Schema Layer 

4.1 Overall Architecture of the SPG-Schema 

The core objective of SPG is to leverage the advantages of the property graph compatibility with the 

big data architecture, and address practical problems in industrial practice to achieve semantic enhancement 

and build a comprehensive semantic system. This chapter provides a detailed explanation of two aspects: the 

extension of the SPG DC subject classification model and the extension of semantic predicates in SPG 

Reasoning. First, extending the subject model based on the definition of schemas or fields in the big data 

tables is the most direct and flexible approach. It involves mapping the columns or fields of the table model 

to the types, properties, and relations of the SPG subject model. This mapping allows for the integration of 

data from multiple heterogeneous sources into an incomplete subject structure. Next, the iterative evolution 

of the incomplete subject structure is carried out to achieve the extension of the logical predicate semantics. 

In this process, SPG draws inspiration from the minimal usable set of ρdf and the logical predicate 

capabilities of OWL. It defines the minimal semantic units of the SPG subject model and expands the 

expression of SPG in terms of the predicate semantics and the logical rules. 

4.1.1 Extension of the Subject Classification Model 

To enhance the semantic expression of the node types in LPG, SPG extends and introduces additional 

subject classification models on the node types and edge types in LPG. This expansion aims to accommodate 

a more diverse representation of knowledge. The expanded subject types include standard types, concept 

types, entity types, event types, and more. The domain classification model of SPG is shown in Figure 25. 

 
Figure 25: SPG Domain Classification Model 

A brief explanation of the SPG subject classification model is as follows: 

• Entity: Objective objects with strong business relevance, represented by a complex structure 

characterized by multiple properties and relations, such as users, companies, merchants, etc.   

• Concept: Abstractions from concrete entities to general ones, representing a group of entity 

instances or event instances, forming a classification system. Concepts are relatively static and 
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represent common knowledge with strong reusability, such as audience labels, event 

classifications, administrative divisions, etc. To simplify the enterprise applications, standard 

types are also included in the concept category.  

• Event: Temporal and spatial multi-dimensional types with constraints (such as time and space). 

For example, the industry events, company events, medical events extracted through NLP, CV, or 

the user behavior events generated from actions like purchasing, redeeming, registering, etc. 

• Property: Properties are the components of the entities, events, concepts, etc., used to describe 

the individual elements of a complex structure. Each property element can be associated with a 

specific simple or complex structure, such as base types, standard types, concept types, etc.  

• Relation: Relations are defined similarly to the properties, and express the association between a 

complex object and the other objects. The difference between the relations and the properties is 

that relations involve entity types as the associated objects. 

1. Entity Types 

Entity types are the basic unit of types in SPG. They are composite data types composed of multiple 

properties and relations, and are directly extended from the Node types in LPG. In the Chapter 2, we 

conducted an in-depth analysis of the challenges currently faced in knowledge management with LPG. To 

address the high data preparation costs and the lack of semantic capabilities in property type in LPG, SPG-

Schema extends the expression of property value types on the LPG Node types. The type of the value can 

be standard type, concept type, entity type, etc. In order to achieve inheritance and reuse of the entity types, 

we draw inspiration from and extend the semantic of the “subClassOf” predicate to enable subclass 

inheritance of properties and relations from the parent classes. To address the issue of inconsistent naming 

of the same entity type due to heterogeneity, we support the fusion of the entity types and align the logical 

alignment of the entity types in different knowledge graphs through entity linking and entity resolution 

operators. In the future, we will focus on releasing the operator binding section in the SPG Whitepaper 2.0. 

2. Concept types and Event types 

 In the schema of the domain knowledge graph, there is a subjective design issue due to different 

internal demands in different business domains. This leads to the existence of multiple similar types for the 

same entity, as different businesses may have different naming and granularity requirements for these types. 

However, the data for these similar types all come from the same source, which severely affects and hinders 

knowledge dissemination and causes inconsistencies between knowledge and data. To avoid such 

inconsistencies, SPG-Schema introduces concept types to classify the similar types and resolves knowledge 

heterogeneity by linking concepts with basic entity types. 

In addition, the event model in the enterprise causal knowledge graph involves multiple dimensions of 

time and space. When modeling the causality layer, it is necessary to associate simple or complex logics 

such as causality, sequence, co-occurrence, and structure. To address the inability of LPG to perfectly 
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express these requirements, SPG-Schema introduces the concept of events to extend the classification model 

and better express the horizontal and vertical associations between the events, entities, and concepts. 

The Concept-Event Quadrant Diagram, as shown in Figure 26, describes the associations between the 

entity types, concepts, and events based on the principles of domain knowledge transitioning from dynamic 

to static, from specific to general, and from instances to concepts. At a more specific level of definition and 

instantiation, the Concept-Event Quadrant Diagram can be divided into four components: abstract entities, 

concrete entities, abstract events, and concrete events. Physically, they are interconnected and form a unified 

graph. 

  
Figure 26: The Concept-Event Quadrant Diagram 

Specifically, the quadrants are divided horizontally into the entity domain and the event domain, and 

vertically into the abstract domain and the concrete domain. The vertical division can also be referred to as 

the concept domain and the instance domain. The abstract entity type represents the abstract concept of the 

concrete entity types, while the concrete entity refers to the specific instantiation of the entity types. The 

abstract event represents the abstract concept of the events to express causality and sequence between the 

events, while the concrete event corresponds to the specific instantiation of the event types. 

3. Standard Properties 

In the RDF/OWL model, each entity, relation, and property needs to be modeled independently. While 

the syntax elements of the property graph are simpler compared to RDF, they are merely declarations of data 

structures and cannot effectively utilize property knowledge for knowledge dissemination. In the actual 

business implementation process, it is often necessary to use the properties for knowledge dissemination and 

analysis. However, in LPG, the properties without explicit domain type constraints are simply literal texts 

or numbers. This not only fails to ensure the integrity and correctness of the property, but also makes it 

difficult to implement effective queries and propagation based on the structure. Leads to the additional 

modeling for the properties and significant data preparation costs due to the variations in property scales. As 
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the demand for knowledge graph-based association analysis increases, these costs are expected to rise even 

further. 

To balance the tradeoff between RDF and LPG regarding properties and effectively reduce data 

preparation costs, SPG-Schema introduces standard property types to simplify data dependencies. The 

application of standard properties can automatically materialize textual properties into relations, increasing 

the ability to propagate knowledge and implicit associations. Since the standard properties are used instead 

of the relation modeling, explicit definition of the relations is not required. The relation propagation between 

entity types is achieved through the semantic propagation of the standard properties. 

4.1.2 Expansion of the Semantic and Rule Reasoning Capability 

In the general modeling process, LPG only consists of two elements: Node and Edge. However, the 

properties of these elements are often in the form of text/strings, which can lead to various issues in practical 

business scenarios. In order to achieve more efficient knowledge propagation and inference on top of the 

expanded 5-category classification model, SPG-Schema introduces a series of semantic predicates to 

constrain LPG, enabling more syntax and semantics. The specific semantic syntax hierarchy diagram can be 

seen in Figure 27. 

 

  
Figure 27: SPG-Schema Syntax and Semantic Hierarchy Diagram 

• Syntax Layer: In this layer, the syntax content of SPG-Schema is defined. The related syntax used 

for semantic reasoning in SPG-Schema can be divided into five categories: minimal constraint set 

(ρdf), binary constraints (BC), multiple constraints (MC), relation group constraints, and dynamic 

types. These can be applied to SPG-Schema in the form of Keywords and built-in Predicates from 

the standard namespace std, depending on the usage scenario.  
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• Semantic Layer: In this layer, the specific domain (dom) and range (ran) of the semantic reasoning 

capabilities in SPG-Schema are defined. This reflects the association between the built-in 

predicates of the reasoning rules and the refined entity classification model. 

4.1.3 The Four-Layer Architecture of SPG-Schema 

For the overall framework of SPG-Schema, starting from four basic contents, the requirements are 

gradually expanded and decomposed to determine the content included in SPG-Schema Core based on the 

semantic completeness and the practical industrial needs. Lightweight syntax is used as much as possible to 

avoid high complexity, ensuring that the complexity of SPG-Schema does not exceed PTIME and 

guaranteeing efficiency in industrial-level implementation. The balance between semantic complexity and 

business application cost is achieved. 

The MOF architecture is a layered metadata architecture, and based on this structure, we can also divide 

the overall modeling hierarchy of SPG-Schema into four layers, as shown in Figure 28. 

 

Figure 28: The Four-Layer Architecture of SPG-Schema 

Based on the above summary, combined with the risk mining knowledge graph and the enterprise causal 

knowledge graph as the basic scenarios, the overall four-layer architecture of SPG-Schema is shown in 

Figure 29. 
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Figure 29: SPG-Schema Four-Layer Architecture Diagram 

The explanation of the four-layer architecture is as follows:  

• Meta Model: This layer provides an overall definition of the SPG Meta Model paradigm. It defines 

the elements needed for modeling with SPG-Schema, but it is transparent to general users.  

• SPG Meta Model: This layer instantiates the Meta Model layer and provides a more detailed 

classification of types and predicates. It defines the structure and syntax of the modeling language, 

adds more semantics to the modeling in the Model layer.  

• Model: This layer defines a specific system model. Users can define the classes, properties, 

relations, and their semantics that can be perceived by the Instance layer using the syntax. The 

data stored in the Model layer represents the modeling in the Instance layer, where the data is the 

instance of the model in the Model layer.  

• Instance: SPG-Schema adopts the Instance-Class separation paradigm, where each Instance must 

strictly adhere to the constraints defined in the Schema of the Model layer. This layer is the largest 

and most concrete layer. The contents of the Instance layer are specific instances. 

4.2 Semantic Enhancement of Nodes and Edges  

The main syntax design of the SPG-Schema extension is achieved by introducing additional keywords 

based on the PG-TYPES [16]. Therefore, the main semantics of SPG-Schema are also divided into three 

categories: NodeType, EdgeType, and GraphType, which correspond to the definition of nodes (Node), 

edges (Edge), and views in LPG. The basic definition of the semantics is located in the SPG Meta Model 

layer, and it adds more related semantics to the Meta Model layer by classifying the LPG node types more 

finely. 
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4.2.1 Syntax and Semantics for the NodeType  

Based on the definition in section 4.1.1, we have classified the commonly used node types in the 

knowledge graph into entity type, standard type, concept type, and event type. we will introduce the basic 

syntax and semantics for these four types. 

1. Entity Type 

Using the syntax “CREATE ENTITY TYPE”, you can define a node type (Class) and the labels and 

property types that appear in the node type. For example, you can create a “User” class using the following 

syntax: 

// Definition of the User entity 

CREATE ENTITY TYPE ( User {  

  phoneNum std.PhoneNum, 

  OPTIONAL taxonomy RiskPerson, 

  OPEN 

}); 

In the above example, the User type is defined with two properties: “phoneNum” and “taxonomy”. The 

type of “phoneNum” is “std.PhoneNum”, and the type of “taxonomy” is “RiskPerson”. The OPTIONAL 

keyword indicates that the “taxonomy” property is optional. The OPEN keyword indicates that when 

defining the model and populating instance data, additional property fields can be added. 

In some cases, it may also be necessary to declare a type as an abstract type, which means that it cannot 

be directly instantiated. In the example above, the “User” type can be annotated as an abstract entity type 

using the ABSTRACT keyword. Therefore, when populating instance data, it cannot be directly populated 

under this type, but rather in the subtypes that inherit from this abstract parent class. This type may not be 

very useful, but it can be helpful for reusing shared properties among multiple subclasses. 

In addition to the above three keywords, we can add more semantic information and constraints to the 

node definitions by referring to the keyword constraints in PG-Keys [17]. The keywords EXCLUSIVE, 

MANDATORY, and SINGLETON are used to represent unique, at least, and at most constraints, 

respectively. This further enhances the semantic constraints on entity properties in SPG-Schema. In the 

following example, we will modify the “User” type to be an abstract type and apply the three property 

constraint keywords. 

// Extend the definition of the User type as an abstract type 

CREATE ENTITY TYPE ABSTRACT ( User {  

  EXCLUSIVE idcard STRING,                                             // Each instance should have a unique ID card number 

  MANDATORY name STRING,    // Each instance should have at least one name 

  SINGLETON birthday DATE,                  // Each instance can have at most one birthday 

  OPTIONAL phoneNum std.PhoneNum,  // Optional field to add phone number with standard property 

  OPTIONAL SINGLETON taxonomy RiskPerson, // Optional concept classification property 

  OPEN 

}); 



Semantic-enhanced Programmable Knowledge Graph (SPG) White paper 

 42 

When the three keywords (EXCLUSIVE, MANDATORY, and SINGLETON) are used together with 

the OPTIONAL keyword in type constraints, the former is used to constrain the data filling in the instance 

layer, while the latter corresponds to whether the instance can use that property. They are not conflict with 

each other. For example, “OPTIONAL SINGLETON type RiskPerson” can be used to indicate that the data 

may not include the concept classification property “taxonomy”, but once this property is added, the instance 

can have only one classification property. 

2. Standard Types  

To distinguish the standard types from the user-defined types, the concept of namespaces is introduced, 

with the “std” namespace representing the standard types. All the standard types are defined within the “std” 

namespace and created using regular expressions. Since standard types are more associated with property 

standardization and are derived from property, they typically only have one property. After defining a 

standard property using the syntax “CREATE NORMALIZED TYPE”, you can use it directly or use the 

“SET PROP” statement and “NORMALIZED” to normalize the properties. It is important to note that 

standard properties should be used in conjunction with regular expressions guided by the “REGEX” keyword 

to constrain the pattern/format of the property values. 

// Definition of the standard type Email 

CREATE NOMALIZED TYPE (std.Email {  

  value STRING REGEX '[a-zA-Z0-9_\-\.]+@[a-zA-Z0-9_\-\.]+\.[a-zA-Z]{2,3}'  

}); 

// Definition of standard type phoneNum 

CREATE NOMALIZED TYPE (std.PhoneNum {  

  value STRING REGEX '/^(13[0-9]|14[01456879]|15[0-35-9]|16[2567]|17[0-8]|18[0-9]|19[0-35-9])\d{8}$/'  

}); 

// Modify the phoneNum property in the User class to be a standard property 

SET PROP (User.phoneNum) NORMALIZED std.PhoneNum; 

Standard types are also one of the most important aspects of property standardization in SPG-Schema. 

Unlike regular LPG properties, when the property in SPG is defined as a standard type, and the semantic of 

that standard type is propagable, the property will be automatically converted into a relation, and the value 

of the property will be treated as an instance of the standard type. This generates more meaningful 

information for semantic reasoning. In this example, we modify the “phoneNum” property of the “User” 

type to be a pre-defined standard property “std.PhoneNum”. Additionally, users can directly specify 

properties as standard types when creating node types. 

3. Concept Types  

When creating a concept type, you can use the “OPTIONAL” keyword to mark certain properties as 

optional, while the remaining properties are considered mandatory by default. By using this type, you can 

associate entitys, properties, and other elements with relevant business conceptual domains, enabling further 

business inference. 

// Definition of the concept of company classification 

CREATE CONCEPT TYPE (CompanyTaxonomy { 
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  isA std.Hypernym, 

  OPTIONAL beginTime TIMESTAMP, 

  OPEN 

}); 

In the example above, a concept type called “CompanyTaxonomy” is created as a conceptual domain. 

When populating concept instances, they will categorized to this concept type. The property “isA”, of type 

“std.Hypernym”, is a mandatory property within this conceptual domain, representing the hierarchical 

relation between concept instances in the domain. The field “begintime” is an optional property. More details 

about the “std.Hypernym” type will be discussed in section 4.3.5 with further elaboration. 

4. Event Types  

When creating an event type, there are mandatory and optional requirements for time, subject, and 

object. The “REQUIRED” keyword is used to indicate mandatory requirements for the fields, while the 

remaining fields are considered optional. It is important to note that event types must have a timestamp 

property and a specified subject type by default. Therefore, we can define an event using the following syntax. 

// Definition of the company operation event 

CREATE EVENT TYPE (CompanyEvent { 

  {REQUIRED occurrenceTime TIMESTAMP, OPEN} 

  REQUIRED SUBJECT (Company | Person), 

  OBJECT (Company | Person) 

}); 

In the above example, we define a company operation event. It includes a mandatory timestamp 

property called “occurrenceTime”, and a mandatory subject type of either “Company” or “Person”. An event 

should be treated as a graph structure. For example, in the defined company operation event called 

“CompanyEvent”, it automatically uses the built-in predicate “std.subject”, indicated by the “SUBJECT” 

keyword, to point to the Company and Person types as the possible subjects of the event. This is a mandatory 

property, while the “OBJECT” can be empty. 

4.2.2 Syntax and Semantics of the EdgeType 

The semantics of EdgeType specify the labels, properties, and types of the property values that appear 

in an edge type. It also specifies the allowed source and target entity types. When using the “CREATE EDGE 

TYPE” statement to create a relation, it is required that both the source and target entity types have been 

defined. Otherwise, there will be a dangling mount situation, resulting in a relation error, and the creation 

will not be allowed. 

// Definition of the holdShares relation  

CREATE EDGE TYPE 

(Person)-[holdShares {percent DOUBLE}]->(LegalPerson); 

In many cases, users may not want to use the triple representation when using the relation. Therefore, 

we can set relation aliases to directly refer to a triple relation. There are two ways to set aliases: direct 
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definition and later modification. For the newly defined “holdShares” relation, the former sets an alias 

directly in the definition using the AS “< >” statement, while the latter uses the “ALTER” keyword to add 

an alias to the relation that has been forgotten to be set. 

// Specify the alias "holdSharesType" when defining the relation 

CREATE EDGE TYPE  

(Person)-[holdShares {percent DOUBLE}]->(LegalPerson) 

AS <holdSharesType>; 

 

// Use ALTER to set an alias for the above holdShares relation 

ALTER EDGE TYPE 

(Person)-[holdShares {percent DOUBLE}]->(LegalPerson) 

AS <holdSharesType>; 

In the definition of an edge type, the “< >” notation is used for the first time to represent the alias of the 

edge. In SPG-Schema, we use “< >” to quickly refer to a graph. For relation, it essentially represents a graph 

type composed of node-edge-node relation. In addition to the basic definition, similar to the property 

constraints mentioned above, the “EXCLUSIVE” keyword can also be applied to relation constraints, which 

we refer to as cross-type constraints. Since there has a unique source node and target node for each relation 

instance by default, the “MANDATORY” and “SINGLETON” keywords are not used to constrain relations. 

// Applied to the source node => an entity cannot simultaneously have multiple outgoing edges of the same relation type. 

CREATE EDGE TYPE (EXCLUSIVE Class1)-[ Type { propClause }]->(Class2); 

 

// Applied to the target node => an entity cannot simultaneously have multiple incoming edges of the same relation type. 

CREATE EDGE TYPE (Class1)-[ Type { propClause }]->(EXCLUSIVE Class2); 

By constraining the source and target nodes of an edge, we can easily achieve relation constraints 

similar to those in relational databases. 

// One-to-one 

CREATE EDGE TYPE (EXCLUSIVE Class1)-[ Type { propClause }]->(EXCLUSIVE Class2); 

 

// one-to-many, 

CREATE EDGE TYPE (EXCLUSIVE Class1)-[ Type { propClause }]->(Class2); 

 

// many-to-many 

CREATE EDGE TYPE (Class1)-[ Type { propClause }]->(Class2); 

In addition, we have also added a specific type of constraint called Binary Constraints (BC) to the 

relation type. These constraints specify the characteristics shared by all individual instances of a specific 

relation type. We will focus on introducing these constraints in Chapter 4.3.2. 

4.3 Semantic Enhancement of the Predicates and Constraints 

In order to manage the minimal predicate set and expand the set of built-in predicates in SPG-Schema, 

a namespace mechanism is used, similar to RDF. This mechanism has already been used when using standard 

types. By introducing the “std” namespace, built-in predicates can be categorized, ensuring that the existing 
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basic predicates form the minimal set. When building schemas for different domain knowledge graphs in the 

future, specific namespaces can be added for different domains. In addition, by defining namespaces at 

different levels, the semantic and capabilities of the Schema Core can be enriched and improved. This will 

provide greater flexibility and utility for applications in different industrial environments. 

The Model layer defines the perceptible class, property, and relation and their semantics for users. As 

the abstraction layer of the Model layer, the SPG Meta Model layer needs to define schema structures through 

a series of constraints. In order to express the semantics of entities, starting from the minimal constraint set 

(ρdf), in section 4.2, we introduced the core semantics of SPG-Schema. In this section, we will focus on the 

additional built-in predicates and constraint semantics that we have added to the Meta Model level of SPG 

Meta Model. The constraints that appear at the Model level are categorized into single binary relation 

constraints, multiple binary relation constraints, grouping rules, and dynamic types. Currently, the predicates 

and constraints we are discussing are all stored under the standard namespace “std”. 

4.3.1 The Minimal Constraint Set ---- ρdf 

The concept of ρdf [18] is derived from the minimal set of predicates in RDF. In order to better meet 

the needs of SPG, adjustments have been made to retain subClassOf, domain, and range as the minimal 

constraint set of the SPG-Schema. 

1. Entity Type Hierarchy (subClassOf) 

The “subClassOf” predicate is used to supplement the semantics of type inheritance by defining 

hierarchical relations between node types. When defining a node type, inheritance can be achieved by 

specifying the name of the type preceded by the “SUBCLASSOF” keyword. 

// Definition of two subclasses of the User 

CREATE ENTITY TYPE (Person {age INT, OPTIONAL father Person}) SUBCLASSOF (User); 

CREATE ENTITY TYPE (LegalPerson {amount INT, legalId STRING}) SUBCLASSOF (User); 

By inheriting from the abstract node type (User), both of these subclasses will automatically include 

the properties and constraints defined in the “User” class. In addition, the “Person” type will include an 

additional “age” property and an optional “father” property. The “LegalPerson” type will include an 

additional “amount” property indicating the number of shares held, and a “legalId” property indicating the 

legal identification number. 

It is important to note that when using the “subClassOf” keyword, it is necessary to ensure that the 

subclass node does not include properties with the same name as those in the superclass node. Otherwise, 

there will be issues with overwriting and overriding. This applies to both cases: when the name and type are 

the same, and when the name is the same but the type is different. We consider both of these cases to be 

errors and they will not be processed. 

2. Domain and Range of the Relations 
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When defining relations, both the source node type and target node type need to be specified. In order 

to reduce the redundancy and computational costs associated with entity conversion, modifications to the 

DOMAIN and RANGE should follow the principle of “addition without modification”. For example, in the 

previous example, a relation called “holdShares” was created, which included a property called “percent” 

representing the percentage of shares held. However, due to an initial improper definition, it was discovered 

that there is an additional requirement for the relations of the form “(LegalPerson) -[holdShares] -> 

(LegalPerson)”. To meet this requirement, the value domain of the relation needs to be modified to include 

“LegalPerson”. 

// The defined holding relation mentioned above 

(Person)-[holdShares {percent DOUBLE}]->(LegalPerson) 

// Adding the domain LegalPerson for it 

ALTER <hold_share> DOMAIN (LegalPerson); 

// The actual form of the relation after the operation should be 

(Person | LegalPerson)-[holdShares {percent DOUBLE}]->(LegalPerson) 

 

4.3.2 Single Binary Relation Constraints (Binary Constraints, BC) 

In SPG-Schema, the BC features are defined as follows: “Binary constraints (BC), i.e., defined to be 

(ir)reflexive, (in)transitive, (a)cyclic, (a/anti)symmetric, etc”. 

These constraints focus more on the properties of a binary relation and are usually defined together 

when defining the relation. Therefore, we define these constraints as keywords. After defining BC constraints 

for a relation at the Model layer, all instances of that relation at the Instance layer should comply with these 

constraints. According to the above definition, BC constraints in SPG-Schema should have the basic 

properties of reflexivity, symmetry, and transitivity. 

Let's assume that several node types, Class1 and Class2, have already been defined. We can create 

reflexive, symmetric, and transitive relations using the keywords “REFLEXIVE”, “SYMMETRIC”, and 

“TRANSITIVE” respectively. The semantic deductions of these definitions are also provided. 

// Definition of reflexive relation edgeA. 

CREATE EDGE TYPE REFLEXIVE (Class1)-[ edgeA { prop STRING }]->(Class1); 

// This means that 

(a:Class1)-[p:edgeA]->(a:Class1) 

-------------------------------- 

// Definition of symmetric relation edgeB 

CREATE EDGE TYPE SYMMETRIC (Class1)-[ edgeB { prop STRING }]->(Class2); 

// This means that 

(a:Class1)-[p:edgeB]->(b:Class2), 

------------------------------- 

(b:Class2)-[p:edgeB]->(a:Class1) 

// Definition of transitive relation edgeC 

CREATE EDGE TYPE TRANSITIVE (Class1)-[ edgeC { prop STRING }]->(Class1); 

// This means that 

(a:Class1)-[p1:edgeC]->(b:Class1), 

(b:Class1)-[p2:edgeC]->(c:Class1) 
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------------------------------- 

(a:Class1)-[p3:edgeC]->(c:Class1) 

In addition to the three basic constraints mentioned above (reflexivity, symmetry, and transitivity), in 

order to achieve semantic completeness, we have also added functional and inverse functional relations based 

on the OWL syntax. These relations are defined using the keywords “FUNCTIONAL” and 

“INVERSE_FUNCTIONAL” respectively. The definitions are as follows: 

 
 

// Definition of functional relation edgeD 

CREATE EDGE TYPE FUNCTIONAL (Class1)-[ edgeD { prop STRING }]->(Class2); 

// This means that 

(a:Class1)-[p:edgeD]->(b:Class2), 

(a:Class1)-[p:edgeD]->(c:Class2) 

------------------------------- 

  (b:Class2) = (c:Class2) 

 

// Definition of inverse functional relation edgeE. 

CREATE EDGE TYPE INVERSE_FUNCTIONAL (Class1)-[ edgeE { prop STRING }]->(Class2); 

//  This means that 

(b:Class2)-[p:edgeE]->(a:Class1), 

(c:Class2)-[p:edgeE]->(a:Class1) 

------------------------------- 

  (b:Class2) = (c:Class2) 

4.3.3 Multiple Binary Relation Constraints (Multiple Constraints, MC) 

To enhance the semantic reasoning capabilities of SPG-Schema, additional support for MC predicates 

has been added. These predicates are more focused on the relation inference between two binary relations. 

They are set using the “SET REL” syntax, where the predicate section uses built-in predicates under the std 

namespace. 

Let's assume that two relations have already been defined with the aliases “<Pred1>” and “<Pred2>”. 

We can define relation inversions and mutual exclusions using the built-in predicates “std.inverseOf” and 

“std.mutexOf” respectively. The semantic deductions of these definitions are also provided. 

// The two relations are mutually inverse 

SET REL <Pred1>-[std.inverseOf]-<Pred2>; 

The “inverseOf” predicate is used to define an inverse relation. If two relations are defined as inverseOf 

each other, it essentially means that they are a pair of equivalent inverse relations. For example, the “superior” 

relation can be defined as the inverseOf the “subordinate” relation. During reasoning, it is possible to utilize 

the "superior" relation to automatically infer the “subordinate” relation, thereby solving industrial problems 

arising from complex semantic reasoning. In the example mentioned, “(Class1)-[Pred1]->(Class2)” and 

“(Class2)-[Pred2]->(Class1)” form a pair of inverse relations. 
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//The two relations are mutually exclusive 

SET REL <Pred1>-[std.mutexOf]-<Pred2>; 

The “mutexOf” predicate is used to define a mutual exclusion relation, where an instance relation can 

only be chosen from the two defined relation types. In the example mentioned, for the same relation instance 

‘s’, it is not possible to have both the “Pred1” and “Pred2” relations simultaneously. In other words, 

“(Class1)-[Pred1]->(Class2)” and “(Class1)-[Pred2]->(Class3)” can only be mutually exclusive, allowing 

for a binary choice. 

In the MC predicates, the appearance of angle brackets “< > -[ ]- < >” is used for a more user-friendly 

representation, which aligns with the original usage habits of Cypher users. In this context, the angle brackets 

“< >” are used as aliases when defining relations. For example, “<Pred1>” can essentially be seen as the 

triplet relation “(Class1)-[Pred1]->(Class2)”. This greatly simplifies the complexity of expressing relation 

between multiple binary relations, making the overall syntax more concise and easy to understand. 

4.3.4 Relation Grouping 

In real-world scenarios, it is often necessary to query a class of similar relations through an abstracted 

relation. Therefore, it is important to introduce relation grouping predicates to assist users in constructing 

groups and reduce query costs. The relation grouping can be divided into two parts: relation grouping and 

property grouping. Since properties can be considered as a kind of relation to some extent, the “SET REL” 

syntax is uniformly adopted to define relation grouping. 

1. Relation Grouping 

The first application scenario of classification is relation grouping, which is primarily defined using the 

built-in predicate “std.subRelOf”. When constructing a group, it is important to ensure the existence of a 

top-level relation. This top-level relation should be marked with the “ABSTRACT” keyword when creating 

it using the “CREATE EDGE TYPE” statement. This indicates that no instances can be associated with the 

abstract grouping relation. Any loaded entity relations should belong to specific relations within this group. 

Relation grouping can also be considered as a relation between two binary relations, but it is different 

from the MC predicates mentioned above. Relation grouping predicates have a distinction in syntax from 

relation type definitions. While the MC predicates define an equivalence relation between two binary 

relations, in relation grouping, there is a clear hierarchy between the two relations. Therefore, the syntax for 

defining relation grouping is in the form of a triplet with arrows: “< >-[ ]->< >”. 

// Creating a grouping of family relations using the ABSTRACT keyword for annotation 

CREATE EDGE TYPE ABSTRACT (Person)-[kinship]->(Person) AS <kinship>; 

 

// Definition of three family relations: isFatherOf, isMotherOf, and conjugality 

CREATE EDGE TYPE (Person)-[isFatherOf]->(Person) AS <father>; 

CREATE EDGE TYPE (Person)-[isMatherOf]->(Person) AS <mother>; 

CREATE EDGE TYPE (Person)-[conjugality]->(Person) AS <conjugality>; 

 

// Definition of relation grouping 
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SET REL <father>-[std.subRelOf]-><kinship>; 

SET REL <mother>-[std.subRelOf]-><kinship>; 

SET REL <conjugality>-[std.subRelOf]-><kinship>; 

Based on the above definitions, we consider the parent-child relation, mother-child relation, and marital 

relation as specific relations within the family relation grouping. These three relations can be directly 

obtained through the “kinship” relation. However, when loading instances, there will not be any triplets 

belonging to the family relation group. Instead, they should belong to one of the specific relations: parent-

child, mother-child, or marital relation. 

2. Property Grouping 

After property normalization, properties can also be considered as specific relations and can be grouped 

using the “subPropOf” predicate. However, this requirement does not align with a complete and 

comprehensive semantic definition. There may still be a need for property grouping even for non-

standardized properties. 

Therefore, the syntax for property grouping is similar to “subRelOf”, as it involves grouping properties. 

The difference lies in the fact that the top-level grouped property may have its own instance data, and 

properties are loaded into entities. Therefore, there is no need to define an abstract top-level property in 

advance using the “ABSTRACT” keyword. Instead, the (type.attribute) pattern is used to specify the desired 

property under a specific type. 

//To group transaction aggregated values within the Person type 

SET REL (Person.1_day_complaint_rate)-[std.subPropOf]->(Person.day_complaint_rate); 

SET REL (Person.7_day_complaint_rate)-[std.subPropOf]->(Person.day_complaint_rate) 

 

4.3.5 Dynamic Types 

1. The Hypernym Predicate for Concept Hierarchy 

Due to the diversity of conceptual domains, different domains may use different hypernyms to express 

hierarchical relations. Therefore, we support the use of the “Hypernym” predicate to express a class of 

hypernyms while defining events. This allows for the hierarchical classification of the events in different 

conceptual domains. This predicate is defined simultaneously when defining the concept type. For example, 

in the concept of risk personnel classification, we can set the hypernym as “isA”, while in the concept of city 

classification (CityTaxonomy), we can set the hypernym as “locateAt”. 

// Definition of Risk Personnel Classification Concept: 

CREATE CONCEPT TYPE (RiskPerson { 

  isA std.Hypernym, 

  OPEN 

}); 

 

// Definition of City Classification Concept 

CREATE CONCEPT TYPE (CityTaxonomy { 
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  locateAt std.Hypernym 

}); 

With this definition, in the risk personnel classification concept, there can be instances such as “gambler” 

isA “risk personnel”. In the city classification concept, there can be instances such as “Chengdu” locateAt 

“Sichuan” and “Sichuan” locateAt “China”. 

In addition, event types are a special type in the schema. They are essentially a graph and are often 

associated with the event classification concepts. Therefore, it is necessary to use special predicates to 

constrain the event types. The “std.subEventOf” is the specific predicate used for the event concept hierarchy 

within the Hypernym predicate. When defining the event concept types, “std.subEventOf” must be used as 

the hypernym predicate. 

// Define the concept of company operation events. 

CREATE CONCEPT TYPE (CompanyOperationTaxonomy { 

   std.subEventOf std.Hypernym, 

   OPTIONAL beginTime TIMESTAMP, 

OPEN 

 }); 

 

// At the instance layer: The concept of executive escape event belongs to the concept of company operation events 

<EscacapeEvent:CompanyOperationTaxonomy>-[std.subEventOf]-><CompanyEvent:CompanyOperationTaxonomy>; 

 

// At the instance layer: The instance of stock price fall event belongs to the concept of company operation events 

<FallInStock:CompanyOperationTaxonomy>-[std.subEventOf]-><CompanyEvent:CompanyOperationTaxonomy>; 

The “std.subEventOf” predicate applies to the event concept instances at the instance layer. After the 

event concept hierarchy is defined, the subject and object of a child event must be subclasses of the subject 

and object types of the parent event, respectively. The child event can also have additional properties apart 

from the parent event. For example, in the given example, the “EscapeEvent” concept and the “FallInStock” 

concept both belong to the “CompanyEvent” concept. 

2.The belongTo Predicate for Dynamic Types 

Dynamic types refers to the practice of associating a concept instance with an entity instance or an event 

instance, effectively using the concept instance's name as the type of that instance. We primarily use the 

“SET REL” syntax and the “belongTo” keyword to specify the specific instances (including the entity 

instances and event instances) and their belonging to specific concept instances. 

// Instances of basic entity types belong to the concept of risk personnel classification 

SET REL <User>-[std.belongTo]-><RiskPerson>; 

Firstly, we can associate the entity types with the concepts. In the previous context, we defined the 

concept of “RiskPerson” and the entity type “User”. We can use the “std.belongTo” keyword to create an 

association indicating that the “User” entity type belongs to the “RiskPerson” classification concept. 

// Definition of Company Operation Event 

CREATE EVENT TYPE (CompanyEvent { 
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  {REQUIRED begintime TIMESTAMP} 

  SUBJECT (Company | Person), 

  OBJECT (Company | Person) 

}); 

// Instances of company operation events belong to the concept of company operation events. 

SET REL <CompanyEvent>-[std.belongTo]-><CompanyOperationTaxonomy>; 

According to the previously defined concept taxonomy for company operations, 

“CompanyOperationTaxonomy”, we can associate the newly defined company event type, “CompanyEvent” 

with it, using the “std.belongTo” keyword. This association allows us to define instances of company events 

that belong to specific instances of the company operation concept within the company operation event 

classification concept. 

3. The leadTo Predicate for Concept Inference  

The “leadTo” predicate, unlike “belongTo”, represents a causal relation at the event concept level. 

Utilizing this rule allows for the automatic inference of related relations within event types. However, both 

“leadTo” and “belongTo” use the same syntax. We can further describe how SPG-Schema uses “leadTo” 

for semantic inference by redefining the event types of executive escape and stock price drop. 

// Define that the operation event of one company can lead to the operation event of another company 

SET REL <CompanyOperationTaxonomy>-[std.leadTo]-><CompanyOperationTaxonomy>; 

// If an event instance "a" belongs to the concept of executive escape event, and there is an instance of executive escape 

event concept leading to an instance of stock price fall event 

<a:EscapeEvent>-[std.belongTo]-><EscapeEvent:CompanyOperationTaxonomy>; 

<EscapeEvent:CompanyOperationTaxonomy>-[std.leadTo]-><FallInStock:CompanyOperationTaxonomy> 

----------------------------------------------------------------------- 

// Automatically generate an instance "b" of FallInStock event, associated with the stock price fall event of company A 

<b:FallInStock>-[std.belongTo]-><FallInStock:CompanyOperationTaxonomy>; 

The relation defined by “std.leadTo” represents an association at the modeling level but applies to event 

concept instances at the instance layer. In the example mentioned above, the instance 

"ExecutiveEscapeEvent leads to FallInStock" represents a causal relation. When an event ‘A’ of an executive 

escape occurs and is associated with the executive escape event concept in the domain, a new event instance, 

“FallInStock of Company A”, can be directly generated. 

4.4 Semantic Enhancement through Rule Definitions 

To form a more comprehensive semantic framework, in addition to the basic predicates and constraints, 

it is also necessary to introduce rule definitions for supplementation. However, rule definitions are mostly 

implemented through programming rather than syntax definition. Therefore, in this section, we will 

introduce the syntax for rule definitions and provide relevant examples for reference. 

4.4.1 The Self-defined Relation/Property Rules 

The Self-defined relation/property rules are common requirements in business scenarios, where a 

specific relation is generated only when certain conditions are met. To accommodate rule definitions, we 
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can further expand the EdgeType syntax using the “RULE” keyword. Since the rule definitions often apply 

to the specific instances, we can use the format (instance:Class) to represent the relation triplets. However, 

creating a relation without a rule block guided by “RULE” will not have any additional effects. 

// To define the hold share rate on a single chain link (recursively defined) 

CREATE EDGE TYPE 

(s:Person)-[p:hold_share_rate]->(o:LegalPerson)  

RULE { 

  STRUCTURE { 

    (s)-[p1:hold_share_rate]->(c:LegalPerson), 

    (c)-[p2:hold_share_rate]->(o) 

  }, 

  CONSTRAINT { 

    real_rate("The actual holding proportion") = p1.real_hold_share_rate*p2.real_hold_share_rate 

    p.real_hold_share_rate = real_rate 

  } 

}; 

The rules can be divided into structural rules and constraint rules. These two kinds of rules are 

distinguished within rule blocks, guided by the keywords “Structure” and “Constraint” respectively. The 

former is composed of the triple relations that form the structure of an instance graph, while the latter is a 

piece of rule code. 

4.4.2 Contradictory Rules 

// Define relation --- Certificate is validly owned by LegalPerson 

CREATE EDGE TYPE (Cert)-[effect_owned_by]->(LegalPerson) AS <effect_owned_by>; 

// when the certificate is valid, there exists a inverse relation - LegalPerson owns the certificate. 

CREATE EDGE TYPE (o:LegalPerson)-[p2:has]->(s:Cert) CONDINVERSEROF <effect_owned_by> 

RULE {   

  STRUCTURE { 

  }, 

  CONSTRAINT { 

    s.is_effect == true 

  } 

} AS <has>; 

The conditional inverse relation is introduced using the “COMDINVERSEOF” keyword combined 

with the “RULE” keyword. It is guided by curly brackets, which enclose several conditional rule statements. 

Only when the conditional rules are satisfied can the two relations be considered as inverse relations. When 

the conditional rule is empty, it defaults to being equivalent to the inverse relation. In the example above, a 

basic relation, “<effect_owned_by>”, is defined. Through inverse relation, it is defined that the “legal person 

owns certificate” relation will only be established when the condition of the certificate still being valid is 

met, and it is annotated with the alias “<has>”. 
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4.5 The Relationship between SPG-Schemas and PG-Schemas 

The PG-Schemas [16] aims to address the shortcomings in property graph database management and 

the lack of schema support in existing systems. It enhances type definitions and improves data integrity 

constraints to provide more flexible type management, supporting a certain degree of type inheritance and 

reuse. By formally defining entities, relations, and properties through PG-Keys [17], they can be expressed 

formally on the property graph. By establishing a flexible and powerful framework for defining key 

constraints, it enhances the logical connections and consistency among different elements of the schema. 

However, the complexity of knowledge graph construction and usage remains high, and users still need to 

prepare a large amount of data work. Additionally, there are still some issues when directly representing 

SPG using PG-Schemas. 

• Lack of business semantic of types: PG-Schemas allow users to dynamically combine node types 

using the operators “&” (and) and “|” (or), providing richer type expression capabilities. However, 

it does not effectively capture the business semantics of types, including the internal semantic 

structure within types and the semantic representation between types. The fuzzy hierarchy 

relations between class labels also makes it difficult to control the structure in practical business 

implementation. 

• Lack of support for logical dependencies: PG-Keys provide a framework for defining key 

constraints as global constraints to enhance the data integrity of the property graphs. However, 

further exploration is needed for the complexity of validation and maintenance in specific query 

languages, as well as for the problems of implication and reasoning. SPG knowledge management 

aims to achieve organic integration between logical rules and factual knowledge, depicting logical 

dependencies between knowledge, and building a hierarchical derivation mechanism for 

knowledge to reduce ineffective duplicate construction and ensure logical consistency. 

• Partial support for feature completeness: The PG-Schemas article mentions that in the current 

version, binary constraints (BC) and introspection (IS) features are not fully supported. The 

authors also found through comparative experiments that BC features are lacking in other works 

such as RDFS, SHACL, and ShEx. 

Overall, PG-Schemas primarily focus on enhancing database management with features such as 

improved type definitions and strengthened key constraints, as described in Chapters 1, 2, and 3. On the 

other hand, SPG is designed to provide knowledge management capabilities in terms of logical dependencies, 

knowledge hierarchy, knowledge construction, and programmability. These are two different perspectives, 

where PG-Schemas enhance capabilities for databases, while SPG aims to lower the barrier of entry for users 

to use knowledge graph and reduce their involvement in knowledge construction. PG-Schemas can provide 

global consistency validation, which can be applied to the knowledge graph produced by SPG. Combining 

the official description of PG-Schemas, the relationship between SPG and PG-Schemas can be illustrated as 

shown in Figure 30. 
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Figure 30: The Relationship between SPG and PG-Schemas 

4.6 Summary of SPG-Schema  

This chapter provides a detailed description of the overall architecture and the design of syntax and 

semantics for SPG-Schema. It also explains the extension details of the main model based on the general 

property graph model. The current version mainly focuses on three main categories: concepts, events, and 

standard types, which are derived from business requirements in SPG DC. The design and formation of 

logical syntax and related predicates for SPG Reasoning, which enhances semantic reasoning capabilities, 

are also described for the expanded classification model. In future versions, there will be a further rigorous 

proof of the semantic completeness of the current syntax, in order to form a user-friendly and complete 

syntax and semantic system. More detailed introductions to predicate logic semantics and syntax will be 

published in the form of serialized articles on the SPG technical community and public platform. 

  



Semantic-enhanced Programmable Knowledge Graph (SPG) White paper 

 55 

Chapter 5 SPG-Engine Layer 

 
This chapter focuses on the implementation of the actual execution process of SPG syntax, which we 

refer to as the SPG-Engine layer. The SPG-Engine layer is a module that converts the inference and 

computation of SPG to be executed in an actual LPG system. The underlying dependencies of SPG typically 

include basic capabilities such as graph storage, graph querying, and graph computation, which are usually 

provided by the graph service provider of LPG. This chapter describes the overall architecture of the SPG-

Engine layer, dividing it into functional modules such as graph model definition, graph data import, graph 

querying, and computation, and provides ways to integrate with the underlying LPG processing system. 

5.1 The Architecture of SPG-Engine  

The SPG-Engine is a module that converts the inference and computation of SPG to be executed in an 

actual LPG system. The underlying dependencies of SPG typically include basic capabilities such as graph 

storage, graph querying, and graph computation, which are provided by the graph service provider of LPG. 

In order to meet the requirements of knowledge graph inference and service capabilities based on SPG, we 

divide the requirements for engine capabilities into basic capabilities and advanced capabilities. 

GQL [19] is the ISO international standard for the property graph query language, which is scheduled 

to be released in 2024. It defines the specification for querying based on property graphs and is compatible 

with both weakly-typed labels and strongly-typed types. The SPG solution does not impose any restrictions 

on whether the underlying graph service uses labels or types. As long as it can implement the interface of 

the SPG-Engine LPG Adapter, it can be integrated with the SPG engine. The SPG-Engine LPG Adapter 

provides a way for the third-party property graph systems to connect to the SPG system. It can be 

implemented using the GQL language or self-defined functions/procedures, and can also be implemented 

using a single HTAP [20] graph database system or a combination of an OLTP graph database system and 

an OLAP graph computing system.  

In conjunction with the architecture diagram shown in Figure 24, the detailed functions of each module 

in the SPG Engine are shown in Figure 31. 
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Figure 31: Overall Architecture of SPG-Engine 

The SPG-Engine Core layer is a functional module that implements the conversion between SPG and 

LPG, running as a dependency package within the SPG-Controller process. The third-party property graph 

system serves as an independent service process, responsible for actual SPG data storage, querying, and 

computation tasks. It interfaces with the SPG2LPG Translator, SPG2LPG Builder, and SPG2LPG Executor 

in the SPG-Controller through DDL interfaces, DML interfaces, query interfaces, and computation interfaces. 

The third-party property graph system needs to meet the basic requirements specified in the SPG-Engine 

specification and implement the integration interface of the SPG-Engine LPG Adapter. For advanced 

requirements, they can be described using configuration files, and if not possible to implement, empty 

interface implementations should be provided. 

As a module supporting core functionality, the performance and elastic deployment capability of SPG-

Engine are crucial. A high-performance third-party property graph system can not only handle large amounts 

of data but also ensure system stability and responsiveness. The elastic deployment capability makes the 

system more flexible in adapting to various application scenarios and changing requirements, improving user 

satisfaction and business adaptability. We can evaluate performance and elastic deployment capability 

through methods such as load testing, benchmark testing, and simulation of real-world scenarios. In the 

current version of SPG 1.0, our focus is on functionality integration and implementation to ensure the 

complete realization of core functions. In future versions, we will enhance and strengthen the description 

and implementation of performance and elastic deployment capabilities and conduct more rigorous 

evaluations to meet user expectations. 

5.2 SPG2LPG Translator  

The SPG-Schema chapter describes the relationship between SPG-Schema and LPG-Schema, as shown 

in Figure 29 in Chapter 4. SPG adds semantic predicates, type extensions, logical rules, etc., on top of LPG. 
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In this chapter, the Semantic Layer's representation of the schema needs to be transformed to the 

corresponding schema format in the LPG engine. The SPG Meta Model can be transformed back and forth 

with the Meta Model, following the schema model hierarchy. The SPG2LPG Translator is primarily 

responsible for converting the SPG schema to the LPG schema format. One of the biggest differences 

between the SPG Schema and LPG Schema is the properties types. The translation framework needs to 

convert the semantic property types in SPG to text/numeric data types in LPG and generate the corresponding 

relations. Additionally, semantic constraints, such as inheritance, dynamic types, and sub-properties, also 

need to be translated. Furthermore, the built-in standard property types in the SPG Schema need to be 

converted into separate entity types with constraints and generate the corresponding relations. The SPG2LPG 

Translator, based on the mapping relationship from the SPG Meta Model to the Meta Model, can be divided 

into three layers: 

• Property2Relation layer: converts properties into edges in the property graph, including standard 

properties, concepts, and events. 

• StandardType Modeling layer: transforms standard properties, concepts, and events into 

corresponding vertex models.  

• DDL interface layer: maps the conversion content from layers 1 and 2 to the DDL interface, 

requiring underlying property graph support for this capability. 

Table 7 shows the type/relation mappings required to complete the translation from SPG Meta Model 

to LPG Meta Model. 

Table 7: Translation Mapping from SPG Meta Model to LPG Meta Model 

 
In SPG Schema, entity types/concept types support inheritance, and relations support reverse edges. 

These definitions need to be translated. Examples are provided in Figure 33 and Figure 34. 

1. Semantic Translation of Entity Types 
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For entity types defined using the subClassOf (inheritance) predicate, the properties of the parent class 

need to be read first and then merged with the properties of the subclass to form the property set of the 

subclass. It is important to note that the property names of the parent class and subclass should not overlap, 

as this is a constraint of subClassOf. Additionally, all top-level parent classes of entity types inherit from the 

root type “Thing”. The “Thing” type includes three basic properties: primary key ID, entity name, and 

description. 

 

 

Figure 32: Illustration of the subClassOf Semantic 

2. Conversion of Property Types to Entity Types/Concept Types  

When the property in the SPG Schema is of type entity or concept, the following conversion actions 

need to be taken:  

• Translate the property type to a text type.  

• Add a text type property named “rawOf + propertyName” to store the original value of the property.  

• Add a relation from the current entity type to the target entity type or concept type, with the relation 

name matching the property name.  

• If there are sub-properties on the property, these need to be synchronized and created as properties 

of the relation. 

 
Figure 33: Lossless Redundant Adaptation Process from SPG Semantic Properties to LPG 
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5.3 SPG2LPG Builder  

This module primarily addresses the handling of one or more entity/relation additions/deletions that 

may occur during the conversion of SPG-formatted data to LPG-formatted data. Data changes can include 

importing entities, deleting entities, importing relations, deleting relations, importing concepts, and deleting 

concepts. The submodules for transforming the SPG Meta Model into the LPG Model are shown in Figure 

34, and they consist of three parts: 

• Semantic Checker: This layer is responsible for semantic checks, ensuring that the input content 

complies with the constraints defined in SPG. 

• LPG Transformer: This layer maps the SPG data to the actual property graph storage model. 

Detailed transformations will be described below. 

• ReadModifyWriter Processor: This layer ensures consistency in read and write operations. 

The conversion and adaptation process from SPG to LPG involves entity conversion, relation 

conversion, concept conversion, etc. For entity conversion, the following DML operations are required: 

UpsertNode/UpsertVertex for adding or updating nodes, DeleteNode/DeleteVertex for deleting nodes, 

AddEdge for adding relations, DeleteEdge for deleting relations, GetEdge for querying relations, etc. Firstly, 

the process checks if the entity property values comply with the corresponding type definitions. Then, queries 

the relations corresponding to the property names of the current entity and deletes the retrieved relations. 

• When the property type is an entity type, the original value is written to the raw property. If the 

strategy is ID equality, a new relation is directly generated from the current entity to the entity 

with the ID indicated by the property value. If the strategy is operator, the operator logic is 

executed, and then a new relation is generated from the current entity to the entity with the result 

ID indicated by the linking operator. 

• When the property type is a concept type, the original value is written to the raw property, and a 

new relation is generated from the current entity to the concept type specified by the property, 

with the ID of the property value. 

• When the property type is a standard type, the original value is written to the raw property. A new 

standard type entity with the ID equal to the property value is created, and a new relation is 

generated from the current entity to the entity generated in the previous step. 
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Figure 34: Subgraph Transaction Update Process of SPG Entity Instance converts to LPG 

For relation conversion, the following LPG DML operations are required: UpsertNode/UpsertVertex 

for adding or updating nodes, AddEdge for adding relations, DeleteEdge for deleting relations, GetNode for 

querying nodes, GetEdge for querying relations, etc. The conversion logic is shown in Figure 37. The process 

checks if the relation changes comply with the semantic constraints. After adding or deleting a relation, the 

values on the equivalent properties of the relation need to be updated synchronously. 

 
Figure 35: SPG semantic constraint check when updating entity instances 

5.4 SPG2LPG Executor  

The SPG2LPG Executor is mainly responsible for executing the execution plan composed of RDG 

operators (Resilient Distributed Graph, RDG) issued by the SPG-Reasoner. The design idea of the RDG 

model is derived from RDD [21] in Spark. Similar to the RDD approach, RDD simplifies the expression 

complexity of original MapReduce data operations by abstracted operators such as Map, Filter, and 

ReduceByKey. The data operation problems also exist in the knowledge graph, so the RDG model is 

abstracted to transform the required graph operations into operator operations in order to express complex 

computing processes. The execution plan is organized in a tree structure and the operators on the tree are 

executed in post-order traversal. To achieve the above goals, the entire SPG2LPG Executor is divided into 

three parts, each with the following functions: 

• RDG Operator Impl: This layer implements the RDG operators based on the underlying LPG 

engine. It includes the functionality defined by each operator, such as Pattern Match, Filter, etc. 
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• RDG Compiler: The RDG compiler converts the execution plan issued by SPG-Reasoner into 

executable binary files that can be executed by the underlying LPG engine. 

• Task Driver: This module submits the binary files generated by the RDG Compiler to the LPG 

Engine for execution. It needs to interface with the specific engine. 

1. Execution Plan Generation 

The execution plan expresses the process of data processing. Taking the determination of whether a 

user is a multi-device user as an example, the KGDSL rules are expressed as follows. 

Define (s:Person)-[p:belongTo]->(o:UserClass/ManyDeviceUser) { 

    Structure { 

        (s)-[t:has]->(u:Device) 

    } 

    Constraint { 

        has_device_num("Number of devices owned") = group(s).count(u.id) 

        R1("owned more than 100 devices"): has_device_num > 100 

        R2("Age greater than 18 years old"): s.age > 18 

    } 

} 

After being transformed by the SPG-Reasoner, the following operator tree is formed. 

└─DDL(ddlOp=Set(AddPredicate(PredicateElement(belongTo,p,(s:Person),EntityElement(ManyDeviceUser,UserClass)) 

    └─Filter(rule=LogicRule(R2,"Age greater than 18 years old",BinaryOpExpr(name=BGreaterThan))) 

        └─Filter(rule=LogicRule(R1,"owned more than 100 devices",BinaryOpExpr(name=BGreaterThan))) 

            └─GroupByAndAgg(group=Set(NodeVar(s,null))  

                └─PatternMatch(pattern=PartialGraphPattern(s,Map(s -> (s:Person), u -> (u:Device)),Map(s -> Set((s)->[t:has]- 

The operator tree starts with the PatternMatch node and ends with the DDL node. Each node in the tree 

represents an RDG operator.  

2. RDG Operators 

In the explanation of the execution plan in section (1), we discussed the order of execution for KGDSL 

operators. This section primarily introduces the definition of operators in RDG. The table below provides a 

list of operators. 
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Table 8: RDG Operator List 

 
 

3. Generating Executable Code 

RDG operators represent atomic operations. To convert the RDG operator tree into executable code for 

the underlying engine, it is necessary to combine it with the execution plan tree generated by the Execution 

Plan Generator. This process is illustrated in Figure 36. 

 
Figure 36: Executable Code Generation Process Flow 

The Compiler generates executable code from the Physical Plan and RDG operators. The pseudocode 

for an Operator is as follows: 

abstract class PhysicalOperator[T <: RDG[T]: TypeTag] 

extends AbstractTreeNode[PhysicalOperator[T]] { 

  /** 

   * The context during physical planner executing 

   * @return 

   */ 

  implicit def context: PhysicalPlannerContext[T] = children.head.context 

  /** 

   * The output of the current operator 

   * @return 

   */ 

  def RDG: T = children.head.RDG 
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  /** 

   * The meta of the output of the current output 

   * @return 

   */ 

  def meta: List[Var] 

} 

Using the RDG operators as nodes to form a tree-like structure, execute in postorder traversal, for 

example, the PatternMatch operator. 

final case class PatternMatch[T <: RDG[T]: TypeTag]( 

    in: PhysicalOperator[T], 

    pattern: Pattern, 

    meta: List[Var]) 

  extends PhysicalOperator[T] { 

  override def rdg: T = in.rdg.patternMatch(pattern) 

} 

The input is the RDG of the child nodes. After invoking patternMatch, a new RDG data is returned. 

Using the example from section 1, the following code (using Neo4j client as an example) would be generated: 

(new Neo4jRDG(driver)).patternMatch(pattern) 

                                   .GroupByAndAgg(s, COUNT) 

                                   .filter(expr("owned more than 100 devices")) 

                                   .filter("Age greater than 18 years old") 

                                   .ddl(new AddPredicate("s", "o", "belongTo")) 

4. Task Execution  

Based on different types of LPG engine interfaces, there are two different scenarios:  

• Scenario 1: LPG provides query languages such as Cypher [22].  

• Scenario 2: LPG provides computational programming frameworks like Spark RDD, allowing 

users to implement calculations by embedding self-defined operators.  

For Scenario 1, the generated executable file is DQL, which communicates with the LPG query engine 

to perform queries and modifications on the target.  

For Scenario 2, the generated code from section 4.3 can be packaged as a plugin and submitted to the 

LPG engine. This process is illustrated in Figure 37. 
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Figure 37: Task Driver Process Diagram 

5.5 Basic Requirements for SPG-Engine on the Property Graph 

Systems  

The third-party property graph systems are responsible for storing, querying, and performing 

calculations on SPG data. These systems use property graphs as the data model, representing and storing 

data using nodes, edges, and properties. They provide query and computation capabilities based on graph 

structure semantics. When classifying nodes and edges in the graph, the system can use weakly-typed labels 

or strongly-typed types, collectively referred to as Labelled Property Graph (LPG) in this context. 

The third-party property graph system is an independent service process that should support distributed 

deployment. It should have independent cluster installation, deployment, management, monitoring, and 

operation methods, preferably with a web-based UI interface. The graph system interacts with SPG-

Controller process through a set of adapter interfaces, which is the SPG-Engine LPG Adapter. 

The third-party property graph system needs to include both data storage and querying, as well as 

analysis and computation on the graph data. Generally, there are two implementation approaches: using a 

single underlying system with HTAP capabilities, or using different TP and AP systems together to meet the 

requirements. Regardless of the implementation approach, the system should fulfill the basic requirements 

for SPG integration with third-party property graph systems, and ideally, fulfill the advanced requirements 

as well. The implementation should conform to the interface specifications described in SPG-Engine Core. 

 
Figure 38: Architecture Diagram for a Single HTAP System and Different TP/AP Systems Integration 
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The basic requirements capabilities are summarized in Table 9.  

Table 9: Basic Functional Requirements for Third-Party Property Graph Systems 

 

5.6 Advanced Requirements for SPG-Engine on the Property Graph 

Systems  

5.6.1 System Capabilities 

• Support for triggers: Triggers are a special type of stored procedure that sets up an automated 

event response mechanism in the database. When the specific database operations occur (such as 

insertions, updates, or deletions), the triggers automatically execute the predefined code or GQL / 

Cypher statements.  

• Support for user-defined functions/procedures/algorithms: User-defined functions / procedures / 

algorithms provide a mechanism to extend graph queries, allowing users to customize the 

functionality of the database and access the internal API directly.  

• Support for storage and querying of time-series data: Determine the validity of nodes or edges 

based on a timestamp field, as well as determine the validity of property values based on the 

timestamps.  

• Capability for multi-level graphs: Mapping multiple logical graphs to one or more physical graphs 

based on business logic. Support mapping from entity to entity, from property to entity, from 

property to property, and allow querying directly on logical graphs using GQL/Cypher. 

• Mapping and conversion of entity/relation types across graphs: Support querying across multiple 

graphs (including physical and logical graphs). 
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5.6.2 Semantic Functionality  

• Conversion of specific properties to edges: Automatically insert and update edges through triggers 

and specify the storage method (in-memory cache or physical disk).  

Table 10: Capability for Conversion of Properties to Edges 

 
// Entity type with properties support 

create (n:Device {id:0, name:"devid****001"}) 

               

// When creating a standard property, the Trigger will execute the statement and convert it into an relation 

match (m:wifi {id:"TP_LIN*****0011"}), (n: Device {name:"A"}) create (n)-[:use_wifi]->(m) 

                                                                 

// When creating a conceptual property, the Trigger will execute the statement and convert it into multiple hop relations      

match (m1:Country {name:"China"})<--(m2: Province {name:"SiChuan"})<--(m3:City {name:"ChengDu"}), (n:Person 

{name:"Zhang San"}) create (n)-[:livi_in]->(m3) 

• Support for knowledge hierarchy: Automatically insert and update based on self-defined logical 

rules through triggers. 

Table 11: Capability for SPG Type Classification 

 
// Define entity type and add type constraint, check if the constraints are met when creating Person type, create belongTo 

relation if they are met  

// Create Person entity 

create (n:Person {id:"2088****0001"}) 

// Trigger server-side constraint checking, create corresponding relation if constraints are met 

match (n:Person {id:" 2088****0001"})-[:has]->(D:Device)-[:has_wifi]->(W:WIFI)<-[:has_wifi]-(D2:Device)<-[:has]-(s)-

[p:belongTo]->(o:Fraudster) create (n:Person {id:" 2088****0001"})-[p:belongTo]->(o:Fraudster)                

 

// Define relation type and add type constraint, check if the constraints are met when creating Device entity, create same_wifi 

relation if they are met 

create (n:Device {id:" devid****001"}) 

// Trigger server-side constraint checking, create corresponding relation if constraints are met 

match (n:Device {id:" devid****001"})--[:has_wifi]->(W:WIFI)<-[:has_wifi]-(o:Device) create (n)-[:same_wifi]->(o) 

 

 

// Define property type and add property constraint, when modify property of App, modify corresponding property of 

instances that meet the constraint rules 

match (n:App {id:"appid*****0012"}) set n.mark = "black" 

// Trigger server-side constraint checking, modify corresponding property of instances if constraints are met 

match (n:App {id:" appid*****0012"})<-[:release]-(m:Company) set m.mark = "black" 
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• Support for built-in predicates: The built-in predicates require multiple advanced capabilities of 

LPG, as shown in Table 12.  

Table 12: Advanced Capability Requirements for LPG 

 
// Transitivity, requires support for path condition matching 

// User profile aggregation, gathering people with the same taste as Zhang San 

match (n:Person {name:"Zhang San"})-[:Hobbies|isA*3]->(m:Taste)<-[:Hobbies |isA*3]-(m2:Person) return m as Taste, 

collect(m2) as Crowd 

// Ultimate controller exploration 

match (n:Company {id:" 4201151234****ABC" ) <-[r:Contorl *1..5]-(m:Person)  

return m as Controller, sum(reduce(total = 1, h IN r | total * h.holdingRatio / 100.0 ) ) as holdingRatio order by  holdingRatio 

                                  

// Contradictory conditions, predicate matching 

// Find fully-owned parent companies of Company A                                  

match (A:Company {id:" 4201151234****ABC"})-[: SubsidiaryCompany {holding_rate:1}]->(B) return B 

// Find fully-owned subsidiaries of Company B                             

match (B:Company {id:" 4201151234****ABC"})<-[: SubsidiaryCompany {holding_rate:1}]-(A) return A 

5.7 Summary 

This chapter introduced the architecture and implementation of the SPG-Engine layer. The SPG-Engine 

layer consists of the SPG-Engine Core and the third-party property graph systems. The SPG-Engine Core 

provides modules for graph modeling, data import, querying, and computation under the SPG semantics, 

and invokes the interfaces provided by the third-party property graph systems for execution. The third-party 

property graph systems are provided by LPG graph service vendors, and can be a unified cluster with HTAP 

capabilities or a combination of separate clusters for OLTP graph databases and OLAP graph processing. 

This chapter also described the integration with underlying LPG processing systems and the required 

functionalities of the third-party property graph systems, enabling SPG to run on various commonly used 

property graph systems. It also provided optimization directions for the property graph vendors to enhance 

the performance of SPG. More details and implementation examples of RDG will be continuously published 

in articles on the SPG official account.  
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Chapter 6 SPG-Controller Layer 

The SPG-Controller is the control layer of the SPG framework, responsible for analyzing, invoking, 

and managing the execution of services and tasks. As the core hub of the SPG framework, it is closely 

associated with other modules to collectively complete the entire task flow from user input to result. The 

SPG-Controller receives requests from the SPG-LLM or SPG-Programming, performs parsing and 

compilation, and generates task planning. It distributes and invokes tasks, selects corresponding capabilities 

to complete the specific execution process, including choosing the corresponding runtime from registered 

and deployed SPG-Engine, SPG-Index, or external capabilities. Finally, it returns the task execution results 

to the caller. This chapter provides an overview of the architecture and workflow of the SPG-Controller, and 

provides a general description of task compilation planning, task distribution and invoking, as well as 

knowledge querying, construction, reasoning, and searching services. The detailed description will be 

gradually unfolded in conjunction with relevant subsystems in the 2.0 and 3.0 white papers. 

6.1 The Architecture and Workflow of SPG-Controller 

 
Figure 39: The architecture and workflow of SPG-Controller 

The SPG-Controller is the core control hub in the SPG framework, with the following main 

responsibilities: (1) Parsing, compilation, and task planning: It performs parsing and compilation based on 

the input from the upper layer, mapping it to the capabilities, commands, and relevant configurations and 

parameters of each subsystem. Then, based on the results of parsing and compilation, it plans the tasks to 

achieve the arrangement of task execution mode, process, and cycle. (2) Task distribution and invoking: 

Based on the results of the task planning, it executes and invokes services and tasks in the corresponding 

runtime. (3) SPG-Builder: It provides a runtime engine for knowledge construction to transform data into 

knowledge in SPG. (4) SPG-Query: It provides a runtime engine for knowledge querying, implementing 

interfaces related to querying and graph-based data mining and analysis in SPG. (5) SPG-Reasoner: It 

provides a runtime engine for knowledge inference calculation, implementing various inference capabilities 
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in SPG, such as logical rule inference and neural network inference. (6) SPG-Index: It provides a runtime 

engine for SPG indexing and searching, implementing the capabilities such as vector search and full-text 

search in SPG. (7) Job/Service Deploy: It provides the registration and deployment of services or tasks in 

the corresponding runtime for each SPG Controller, enabling their capabilities to be effectively called. 

In the overall system architecture, firstly, the SPG-Controller serves as the runtime engine for the SPG-

Schema and provides CRUD Python/Java interfaces. Secondly, it provides task compilation and distribution 

capabilities for the SPG-Programming. The task compilation includes syntax checking, algorithm/task 

validity checking and reusing, execution planning, and bytecode generation. Additionally, it accepts 

pluggable sub-engine modules to be added to the registration information module. Finally, it accepts task 

requests as input, compiles and distributes tasks, dispatches tasks to sub-engines for computation, receives 

the results, and assembles them to return to the user. 

6.2 Parsing, Compilation, and Task Planning 

The input parsing module receives input from SPG-LLM or SPG-Programming and parses it to 

understand the instructions of the user. This helps identify the task type, execution logic, and process that 

need to be performed. The input consists of two main parts: task type and task body. The task type determines 

the type of the task to be executed, while the task body includes the interfaces and their parameters to be 

invoked. Here are the main task types and their definitions: (1) Schema tasks: Corresponds to basic CRUD 

interfaces for the knowledge graph schema. The task body includes the interface to be called and its 

parameters. The interface is defined and implemented in the SPG-Schema module. (2) Query tasks: 

Corresponds to basic knowledge graph queries, utilizing the graph query capabilities in SPG-Engine. The 

task body consists of a query language like GQL. (3) Reasoning tasks: Corresponds to reasoning tasks in the 

knowledge graph, such as rule-based reasoning using KGDSL or neural network-based reasoning tasks. (4) 

Search tasks: Corresponds to search tasks, such as vector indexing and full-text indexing. This includes tasks 

such as index creation, tokenization indexing/vector data writing, and text search/vector search. The task 

body consists of query tasks with conditions. (5) Construction tasks: Corresponds to SPG knowledge graph 

construction tasks, involving mapping structured data to knowledge, extracting unstructured and multimodal 

knowledge, and knowledge fusion. 

Task planning is based on the results of parsing and compilation to arrange the execution mode, process, 

and cycle of the tasks. 

6.3 Task Distribution and Invocation 

Based on the results of task planning, the tasks are distributed and executed in the corresponding 

runtime, including the registered runtimes for various services and tasks, as well as the pipeline of the task 

execution. During the task execution process, SPG provides a microservice invocation framework and task 

scheduling engine to enable service invocation and task execution. Additionally, the SPG-Controller 

provides storage capabilities to store crucial information during task execution, including log data, 
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intermediate and final results, execution status, and scheduling data. Storing and tracing this information 

aids in monitoring and managing the task execution process, ensuring reliability and stability. 

6.4 Knowledge Graph Construction 

SPG-Builder facilitates the conversion from data into knowledge, including the extraction of knowledge 

from structured data, semi-structured data, and multi-modal unstructured data. The main capabilities include: 

(1) ER2SPG: This functionality involves converting data to SPG knowledge, where knowledge is obtained 

through mapping and transformation of data from a database or big data platform. Based on the conversion 

of original data to ER (Data to ER, D2R), the input is modified to comply with the SPG specification. (2) 

Semi-structured knowledge extraction: This functionality is used for extracting knowledge from semi-

structured data, and obtain structured elements. This functionality will be added in the second phase. (3) 

Text knowledge extraction: This functionality will involve utilizing Large Language Models (LLMs) to 

extract knowledge from text data. This functionality will be added in the second phase. (4) Multi-modal 

knowledge extraction: This functionality is designed for extracting knowledge from multi-modal 

unstructured data, such as images, audio, video, and so on. This functionality will be added in the second 

phase. 

With the support of these capabilities, SPG-Builder can extract valuable knowledge from various forms 

of data, fully harnessing the vast amount of data accumulated in the big data ecosystem. This knowledge is 

then stored in the SPG repository for future application, analysis, and inference purposes. 

6.5 Knowledge Query 

SPG-Query provides knowledge graph query and analysis services, including the basic CRUD 

operations on knowledge graph: graph searching, and graph analysis and mining. Specific query functions 

include: (2) Basic Query: Supports precise queries on entities, concepts, and properties. For example, 

querying for the account with the ID “2088****0001” in the risk mining knowledge graph. (2) Advanced 

Query: Supports fuzzy queries and full-text search on entities, concepts, and properties. For example, 

performing a fuzzy search on event names or company names in the enterprise causal knowledge graph. (3) 

Graph Traversal Query: Supports breadth-first and depth-first algorithms for graph traversal queries. For 

example, querying for accounts that have transaction records in the risk mining knowledge graph. (4) Pattern 

Matching Query: Supports subgraph queries that satisfy specified patterns. For example, querying for 

subgraphs in the risk mining knowledge graph that follow the pattern A-B-C-A (transfer of funds). 

In addition, SPG-Query provides various graph analysis algorithms, including: (1) Community 

Detection Algorithms: such as LPA, WCC, SCC, Louvain, etc., which can be used to identify frequent 

transaction groups in the risk mining knowledge graph. (2) Authority Ranking Algorithms: such as PageRank, 

HITS, degree centrality, betweenness centrality, closeness centrality, etc., which can be used to calculate the 

weight of each node in the risk mining knowledge graph. (3) Other Algorithms: such as triangle counting, 

which can be used to calculate the frequency of a specific transaction subgraph in the risk mining knowledge 
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graph. These features assist users in gaining a deeper understanding of the knowledge in SPG, enabling them 

to analyze it more effectively and extract valuable insights. 

6.6 Knowledge Graph Reasoning 

SPG-Reasoner provides the capability to invoke knowledge graph reasoning, including commonly used 

knowledge graph reasoning methods. Specific reasoning methods includes: (1) Rule-based Reasoning 

Algorithms: Used for inferring risk propagation rules in enterprise causal knowledge graph and defining 

expert rules related to risky activities in the risk mining knowledge graph. (2) Graph Embedding Learning 

Algorithms: Includes graph neural networks, random walks, translation distance, etc., used for embedding 

learning and representation learning of the knowledge graph in SPG. (3) Prompt Learning Algorithms: Used 

for constructing learning algorithms for prompts in SPG-LLM. This functionality will be specifically 

implemented in future releases. 

To support these reasoning capabilities, SPG-Controller provides storage management for registering 

information on reasoning rules, reasoning algorithms, and configuring algorithm parameters. This aids in 

monitoring and managing the reasoning process. 

6.7 Full-Text Search and Vector Search  

SPG-Index provides search services, including conventional search methods such as vector search and 

full-text search. SPG-Controller interacts with the external SPG-Index plugin, allowing users to easily search 

and query data. Specific functionalities include: (1) Index Creation and Management: Supports the creation 

and management of indexes. (2) Index Data Writing and Updating: Supports writing data to the index and 

performing updates. (3) Vector-based Search: Supports vector-based search, enabling data search and query 

based on similarity. 

6.8 Deployment of the Services and Tasks 

“Job/Service Deploy” handles the registration and deployment of services or tasks corresponding to the 

core modules. Specific functionalities provided include: (1) Registration: Supports the registration of 

services and tasks, allowing them to be discovered and invoked in SPG-Controller. (2) Management: 

Supports the management of microservices or tasks, including the oline/offline operations and the 

configuration management. (3) Execution: Supports the execution of services or tasks in the runtime 

environment. (4) Monitoring: Supports monitoring the running status, including resource monitoring, to 

promptly detect and resolve service failures. 

In the implementation, SPG-Controller stores the registered and deployed services and tasks, and 

schedules them during the task execution. To achieve the task scheduling, a task scheduling engine can be 

used to manage jobs scheduled precisely to the hour, minute, and second, and the concurrency level can be 

set by dynamically configuring shard parameters. To enable microservice invocation, a microservice 
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governance framework can be used to manage and invoke microservices, and a microservice gateway can 

be employed to expose services externally. 

6.9 Summary 

This chapter provides a summary description of the overall architecture and workflow of the SPG-

Controller. In terms of specific tasks, the current version primarily focuses on constructing structured data 

into a knowledge graph, basic knowledge querying and analysis, knowledge reasoning, and knowledge 

searching. In future versions, these tasks will be further refined and expanded, such as constructing 

knowledge graphs from unstructured and multimodal data, representation learning for reasoning, and 

composite indexing. Additionally, other types of tasks will be integrated, such as integrating external plugin 

systems and instruction systems. Furthermore, future versions will enhance the management functionalities 

of SPG-Controller, including unified authentication management and exception handling.
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Chapter 7 SPG-Programming Layer 

Decoupling the domain model from the underlying engine is a fundamental capability that AI basic 

engines must possess. By using the programmable SDK and operator frameworks, the business domain 

model can be separated from the underlying engine, allowing developers to quickly build and deploy self-

defined knowledge graph algorithms, schema models, and reasoning capabilities. This helps businesses to 

rapidly develop and deploy knowledge graph applications, improving efficiency and scalability. The 

underlying engine also focuses on optimizing general capabilities such as I/O, scheduling, performance, and 

throughput. The SPG engine is also divided into three layers: the core underlying engine layer, the SDK and 

operator framework layer, and the business application layer. 

 
Figure 40: SPG-Programming Domain Layering 

This chapter provides a brief overview of SPG-Programming. A more comprehensive introduction and 

the complete syntax representation of KGDSL will be officially released in the Whitepaper 2.0 version. It 

will also be detailed in a series of articles. 

7.1 SPG Semantic Programmable Architecture 

The main capability of the programmable sub-module is to provide users with a programmable 

interactive interface, supporting algorithm/business engineers to model, construct, and reason for the domain 

knowledge graphs according to the programming framework provided by SPG, and supporting the 

continuous iteration of the domain knowledge graphs. 
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Figure 41: SPG Programmable Framework  

In terms of programmability, it includes the following aspects:  

• Knowledge Construction Framework: An operator framework for building the domain knowledge 

graphs based on structured, unstructured, and semi-structured data.  

• Logical Rule Programming: Includes logical rule properties/relations, KGDSL rule reasoning, etc.  

• Representation Learning and reasoning: Using knowledge graph-based data to implement graph 

neural networks, logic-guided reasoning, and other knowledge graph-based reasoning methods. 

7.2 The Construction and Transformation from Data to Knowledge 

As shown in Figure 1 in Chapter 1, with the help of the SPG framework, data can be transformed into 

knowledge through the programmable operators. These operators include the following categories: (1) 

Information Extraction Operators: These operators enable the structuring of all unstructured and semi-

structured data to obtain knowledge elements. (2) Subject Mounting Operators: These operators involve 

mounting entities, events, and concept types, as well as mounting entity/event properties. (3) Entity Fusion 

Operators: These operators address issues related to the construction of entities from multiple heterogeneous 

sources and the fusion of knowledge across knowledge graphs. (4) Dynamic Classification Operators: These 

operators support the dynamic definition of business types at a granular level using logical rule-based 

classification expressions. 

The use of standardized operator frameworks and property elements can significantly reduce the cost 

of preparing raw data. Operators are only related to target entities, concept types, and event types, thus 

greatly reducing the cost of redundant development. With the introduction of standardized property elements, 

the types of properties in schema modeling transition from text (Text), integer (Long), and float (Double) to 

the domain model modeling.  
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The pseudo-code representation based on LPG modeling is as follows: 

class User { 

  id TEXT(Text); 

  name TEXT(Text);  

  phoneNo LONG(Integer);  

  poc     TEXT(Text); 

  homeAddr TEXT(Text);  

} 

Pseudo-code representation based on SPG modeling is as follows: 

class User { 

  id UserNormId(User standard ID); 

  name TEXT(Text);  

  phoneNo ChnMobilePhone(Mainland China phone number);  

  poc     AdminArea/Province/City/District(administrative division); 

  homeAddr POI(Standard POI);  

} 

By preparing a User table, users can construct four types of entities and four types of relations, thereby 

significantly reducing the cost of preparing raw data. With the introduction of knowledge construction 

operators, the operator framework and operator implementation are separated, and the knowledge 

construction process is defined as standard components, providing a unified runtime framework for these 

components. The algorithm developers can quickly implement knowledge construction operators based on 

the python operator framework and bind them to target types. At the same time, Link Function/Fuse Function 

or Normalize Function can be specified for each type, facilitating the continuous iteration of the knowledge 

graph and addressing the issues of continuous construction and evolution of incomplete data and instance 

resolution in industrial applications. A simple example of the operator definition in pseudo-code is shown 

below, which can be bound to specific types using “bind_to”: 

# -*- coding: utf-8 -*- 

 

from knext.api import EntityLinkOp 

from knext.api.base import BaseOp 

from knext.models.runtime.vertex import Vertex 

 

@BaseOp.register("AdminAreaNormOp", bind_to="AdminArea", is_api_iface=True) 

class AdminAreaNormOp(PropertyNormalizeOp): 

def eval(self, property: str, record: Vertex) -> EvalResult[str] 

    traces, errors = [], [] 

    result = "" 

    try: 

        result = adminNorm(property) 

    except Exception as e: 

        errors.append(f"property:{property}, error_msg:{e.__repr__()}") 

    return EvalResult(result, traces, errors) 
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SPG supports the adaptive propagation of properties and relations during the query phase to minimize 

user usage costs. When users provide GQL/KGDSL expressions, if propagation is necessary, it will be 

automatically expanded. If propagation is not required, the standardized property values will be extracted by 

default. More detailed information about the KGDSL syntax will be provided in future articles. 

7.3 Logical Rule Programming 

Predicate semantics are the key foundation for implementing the SPG logical rule programming. 

Through predicate semantics, SPG can be translated into a machine-understandable form and enable machine 

automatic reasoning capabilities. The definition of these capabilities includes the following layers: (1) Built-

in predicates: These are predefined basic predicate capabilities. They do not possess any business semantics 

but can be referenced by higher-level rules. (2) Logical rule knowledge: This layer includes logical rules 

that exist in the form of properties/relations, and enable dynamic classification of entities based on these 

rules. (3) Reasoning decision rules: These rules are derived from subgraphs, structures, paths, and other 

forms. They support rule-based decisions, knowledge injection, and more. Figure 42 illustrates the overall 

layered structure. To balance the cost of rule management and computational complexity, it is specified that 

built-in predicates can only be used to define logical rule knowledge. The application of knowledge 

reasoning layer relies only on basic factual knowledge and logical rule knowledge. 

 
Figure 42: Dependency of the Reasoning Decision 

Defining dependencies between knowledge using predicates and logical rules has been extensively 

explained in Chapter 4, and it will not be reiterated in this chapter. Logical rule programming mainly consists 

of two parts: defining knowledge dependencies through logical rules and generating logical derived 

properties/relations. Additionally, complex end-to-end rule decisions can be defined using DSL/GQL. An 

example of KGDSL decision is provided below: 

Structure { 

  (s:User) 

  (e1:TradeEvent)-[ps1:std.subject]->(su1:User) 

  (e1:TradeEvent)-[pp1:std.object]->(sp1:PID) 

  (e2:TradeEvent)-[ps2: std.subject]->(su2:User) 

  (e2:TradeEvent)-[pp2: std.object]->(sp2:PID) 

  (su1)-[has]->(sp2) 
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  (su2)-[has]->(sp1) 

  (e2)-[pb:belongTo]->(o:/TaxoOfTradeEvent/HighTransactionAmount) 

} 

Constraint {  

  s.id == su1.id 

  e1.ts < e2.ts and hour(current_time()) - hour(e1.ts) < 24  

  group(s).count() > 10        

} 

Action { 

  createEdgeInstance( 

src=s,  

    dst=o:TaxoOfUser/TransactionRisk/MultipleRefundTransactions,  

type="belongTo", 

    value= { time=now() }  

)  

} 

7.4 Knowledge Graph Representation Learning 

The core problems addressed by the knowledge graph representation learning framework are graph 

feature extraction and subgraph extraction. It is designed to be compatible with mainstream deep learning 

frameworks such as TensorFlow/PyTorch and further convert them into tensor structures required by 

corresponding graph learning algorithms. 

 
Figure 43: Graph Representation Learning Framework 

Knowledge graph representation learning achieves the linkage and decoupling of the graph learning 

and the graph data through the sampling operator module. The main graph sampling operators currently 

available include: (1) Subgraph sampling: This is primarily used for multi-hop subgraph sampling in GCN 

models. It includes positive/negative sample generation and supports weighted sampling and time filtering 

in the SPG large-scale dynamic heterogeneous paradigm. (2) Structure extraction: This is used for structure-

aware reasoning tasks such as symbol rule-guided graph learning and rule mining. (3) Feature computation: 

This mainly involves extracting subgraph features such as PageRank and degree centrality that can be 
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computed from the complex graph structure. The following pseudo-code represents the concept of multi-

hop subgraph sampling in GCN algorithms. It demonstrates the efficient reading of the knowledge graph 

data using Python sampling operators: 

# -*- coding: utf-8 -*- 

import libkg_client 

from kgrl.conf import KgrlConstants # noqa 

from kgrl.data import KGExpression # noqa 

from kgrl.data.sampler import KGStateCacheBaseSampler 

 

in_degree = KGExpression.SourceNodeInDegreeKey() 

out_degree = KGExpression.SourceNodeOutDegreeKey() 

node_version = KGExpression.SourceNodeVersionKey() 

edge_version = KGExpression.EdgeVersionKey() 

v_begin = 30 

v_end    = 40 

def get_filters(v_begin, v_end): 

    return { 

        KgrlConstants.NEIGHBORHOOD_SAMPLING_FILTER_NAME: f"{edge_version}<{v_begin} and       

{edge_version}>{v_end}", 

        KgrlConstants.NODE_SAMPLING_FILTER_NAME: f"{node_version}==0", 

        KgrlConstants.EDGE_SAMPLING_FILTER_NAME: f"{edge_version}<{v_begin} and {edge_version}>{v_end}", 

    } 

def get_weights(v_begin, v_end): 

    return { 

        KgrlConstants.NEIGHBORHOOD_SAMPLING_WEIGHT_NAME: f"abs({edge_version}- 

{v_begin})*log2({edge_version}+{v_end})", 

        KgrlConstants.NODE_SAMPLING_WEIGHT_NAME: f"({out_degree}+{in_degree})", 

        KgrlConstants.EDGE_SAMPLING_WEIGHT_NAME: f"abs({edge_version}-

{v_begin})*log2({edge_version}+{v_end})", 

    }  

sampler_conf = { 

     "client_conf": {...},   

     "gen_data_conf": { 

           "random": True, "fanouts": [50, 20], "buffer_size": 2, "filters": get_filters(10, 20), "weights": get_weights(10, 20), 

    }, 

} 

sampler = NodeSubGraphSampler.from_params(sampler_conf) 

7.5 Summary 

This chapter provides a summary introduction to the layered abstraction of the SDK programmable 

framework. The complete programmable framework is expected to be released in detail in the “SPG 

Semantic-enhanced Programmable Knowledge Graph Framework” whitepaper 2.0. 
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Chapter 8 SPG-LLM Layer 

At the beginning of 2023, Large Language Models (LLMs) have demonstrated their powerful 

capabilities, particularly in language understanding and dialogue generation. On the other hand, knowledge 

graphs excel in addressing factual “illusions” and complex reasoning problems that the LLMs struggle with. 

By effectively combining the strengths of knowledge graphs and LLMs, we can leverage their respective 

expertise to provide high-quality AI services and products. 

Building upon SPG, the SPG+LLM dual-drive framework is formed by leveraging the structure, 

semantics, and logical understanding capabilities of LLMs. With SPG's strong schema, logical constraints, 

and symbolic expression capabilities, the efficiency of the domain knowledge construction and reasoning 

can be further improved. By integrating the intent understanding, intent diffusion, task construction, and 

controlled generation based on users' natural language expressions, SPG-LLM enables interactive 

knowledge querying and reasoning using natural language. This is an ongoing direction of exploration. Base 

on the strong schema, logical constraints, and symbolic expression capabilities of SPG, further efforts are 

made to improve the efficiency of the domain knowledge construction and reasoning, accelerate the 

industrial implementation of knowledge graph, and combine the intent understanding/intent diffusion, task 

construction, and controlled generation based on users' natural language expressions, to achieve interactive 

natural language querying and reasoning on the knowledge graph. This chapter provides a brief introduction 

to the architecture of LLM and SPG for natural language interaction. It also introduces knowledge extraction 

based on LLM, drawing from the practice of DaGuan Technology. 

8.1 SPG-LLM Natural Language Interaction Architecture 

Based on the overall architecture defined in Figure 24, the natural language interaction of the large 

language model (LLM) can be divided into four main parts: LLM Adapter Interface, SPG Constructor for 

automatic extraction and construction of the knowledge graph, SPG NL Query for natural language querying 

based on LLM, and SPG NL Reasoner for natural language reasoning based on LLM. 

8.2 Automatic Extraction and Automated Construction of Knowledge 

Graphs 

After using LLM, the process of constructing a knowledge graph is as shown in Figure 44. 

 
Figure 44: The Construction Chain of Knowledge Graph 

Business Understanding and Schema Design: The design and implementation of the knowledge 

graph schema require a deep understanding and abstraction of the knowledge in the domain. It also needs to 

consider the quality and accessibility of the data sources, as well as the requirements and limitations of the 
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application scenarios. This process is typically a collaborative effort involving multiple parties. The book 

“Knowledge Graph: Cognitive Intelligence Theory and Practice”, provides a series of practical experiences 

and summarizes them as the “Six Taoist Methods” (as shown in Figure 44). In the schema design process, it 

is important to make full use of the content of SPG-Schema and further expand it by introducing standardized 

natural language annotations. The content related to natural language annotations of SPG-Schema will be 

introduced in future versions of the whitepaper. We can refer to the definitions within Ontology, which 

allows us to define concepts, properties, relations, constraints, and rules. It also supports inference and 

validation. Well-known ontology libraries such as schema.org, FIBO, GO, etc., can be referenced or reused 

to optimize the design of the schema. The goal is to ensure the standardization, consistency, and universality 

of the designed schema. 

 
Figure 45: Chapter 2 of the book “Knowledge Graph: Cognitive Intelligence Theory and Practice” [6] 

Manually curated Examples and Automatic/Human-Written Prompts: The process of prompt 

engineering is based on the designed schema to achieve automatic extraction of entities, relations, and 

properties, thereby constructing a knowledge graph. The engine for automating prompt generation can also 

be implemented with reference to the reasoning engine in the ontology. The generation of the prompts relies 

on the natural language annotations in the schema and the manually curated examples. In practice, the 

manually curated examples or the use of LLM-generated extraction examples can help with few-shot 

learning to improve the accuracy of LLM extraction. 
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Figure 46: Example of LLMs Extraction 

LLM Extraction and Optional Manual Review: Utilizing LLM to construct a knowledge graph, with 

the provision of manual review when necessary to ensure the accuracy of the constructed knowledge graph. 

 

Figure 47: Examples of LLMs Extraction and Review 

Knowledge Graph Construction: Integrating the results extracted by LLM into an existing knowledge 

graph, involves using LLM for entity extraction, relation extraction, and other methods to construct the 

knowledge graph from a large amount of text. The key lies in the specification of the entity types, relation 

types, property types, and other elements defined in the knowledge graph schema, particularly the relevant 

natural language annotations. This is strongly related to the specification of the SPG-Schema, which provides 

natural language annotations in the schema, aiding in their transformation into prompts for LLM extraction 

and interaction. There should be three levels of content in this regard:  

• Natural language annotations for the entity types, relation types, and property types. 
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• Natural language annotations for the concept hierarchies, semantic correlations, logical rules, and 

other aspects.  

• Standardization of the above two types of annotations, which helps in achieving a common library 

(engine) for automated prompt generation. 

The natural language annotations in the schema serve two purposes: on one hand, they enable the 

automatic generation of the prompts, and on the other hand, when using LLMs to construct knowledge 

graphs, they can be used to generate samples for few-shot learning. In practice, few-shot learning is crucial 

in relation extraction. It is difficult to achieve good performance in zero-shot learning, but few-shot learning 

can significantly improve the effectiveness of relation extraction. 

8.3 Domain Knowledge Completion with LLMs 

Using LLMs for knowledge completion can help small and medium-sized institutions acquire richer 

domain knowledge. Compared to relying solely on internally accumulated knowledge, LLMs leverage vast 

amounts of text data to obtain comprehensive common knowledge and domain-specific knowledge. By 

extracting and saving knowledge from LLMs into a knowledge graph using specialized methods, 

organizations can benefit from more efficient knowledge accumulation and utilization. In contrast to 

traditional knowledge mining processes that aim to make implicit knowledge explicit in existing knowledge 

graphs, knowledge completion with LLMs focuses more on extracting domain-specific knowledge from 

LLMs and integrating them into the knowledge graph, providing knowledge that does not exist in the 

knowledge graph. This whitepaper only introduces the concept of “knowledge completion” using LLMs, 

and further versions will provide more implementation methods, examples, significances, and other details. 

8.4 Natural Language Knowledge Querying and Intelligent Question 

Answering 

Traditional knowledge graphs have limited natural language understanding capabilities. LLMs can help 

address this deficiency by leveraging their language understanding and generation capabilities, which are 

developed through training on billions of parameters. By combining the two, knowledge graphs can 

understand user queries in natural language and provide accurate answers using their inherent knowledge. 

The LLM is responsible for semantic analysis, while the knowledge graph provides structured knowledge 

for answer retrieval, complementing each other. This combination leverages the advantages of structured 

knowledge in knowledge graphs and the language understanding capabilities of LLMs, thereby providing 

more user-friendly question answering services. The LLM analyzes the real intent of the query, while the 

knowledge graph offers rich background knowledge to assist in retrieving more accurate and relevant search 

results. In dialogue systems, knowledge graphs provide a source of contextual knowledge, making 

conversations more intelligent and human-like. The LLM handles natural language interaction, while the 

knowledge graph supplements relevant knowledge, enabling the robot to have stronger contextual awareness. 
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By combining the powerful capabilities of LLMs and vector search, integrating natural language 

interaction with knowledge graphs can create controllable, trustworthy, and reliable question answering 

systems. This approach helps address the “hallucination” problem faced by LLMs and facilitates the 

implementation of industrial applications, enabling the realization of the “last mile”. Please refer to Figure 

48 for illustration. 

 
Figure 48: Architecture for controllable, trustworthy, and reliable question answering with the combination 

of LLMs and knowledge graphs (early draft) 

NL2GQL/NL2KGDSL utilizes human-annotated datasets, which contains tens of thousands of natural 

language - GQL/KGDSL pairs, to perform Semantic Feature-based Training (SFT) on LLM, enabling natural 

language knowledge querying and intelligent question answering. The focus of this whitepaper release is 

primarily on theoretical exploration. 

In future versions, as GQL or KGDSL mature, related datasets will be released, along with 

specifications, code repositories, and models for SFT based on open-source large language models. Please 

stay tuned for further updates. 

8.5 Summary 

This chapter provides a summary introduction to the basic principles and framework of the SPG-LLM 

layer. It also introduces the concept of “knowledge completion”. The future release of the “Semantic-

enhanced Programmable Knowledge Graph Framework (SPG)” whitepaper is expected to focus on 

providing a comprehensive overview of the SPG-LLM layer. 
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Chapter 9 New Generation Cognitive Application Cases 

Driven by SPG 

In Chapter 2, we summarized and analyzed the problems in the construction and application of LPG-

based knowledge graph in enterprise causal and risk control. This chapter combines the problems raised in 

Chapter 2 to explain how they are solved based on SPG, and provides an overall solution. 

9.1 Enterprise Causal Knowledge Graph Driven by SPG 

In this chapter, we take the example of the 2019 dam collapse incident at the Vale of Brazil, mentioned 

in section 2.3. The incident caused an increase in the price of iron ore, resulting in a rise in steel production 

costs for downstream companies. In the entire chain of events, companies belonging to the same industry as 

Vale (i.e., competitors) benefited from the incident and saw an increase in profits. However, this had a 

negative impact on the downstream of the industry chain, as the rising cost of raw materials led to a decrease 

in profits for these companies. In response to the issues raised in section 2.3 regarding the application of the 

enterprise causal knowledge graph based on property graph, we propose a solution using SPG. 

1. Addressing the Requirement for Dynamic Event Classification through Derivable Concepts 

The enterprise causal knowledge graph involves the evolution and reasoning of events at the conceptual 

level. Therefore, the first step is to map event instances to their respective event concepts, using the 

“belongTo” predicate to connect event instances to the corresponding concepts. Since there are numerous 

event types that are difficult to define in advance, SPG supports the derivation of new concepts through 

specific combination rules using concepts. This enables dynamic classification of event instances. An 

example is shown in Figure 49. 

 
Figure 49: Combination of Concepts 
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In this example, there are two event instances: “Decrease in Steel Net Profit” and “Increase in Iron Ore 

Prices”. The former belongs to the event classification of the industry chain, and the concept of “Decrease 

in Net Profit” can be derived through the combination of the “indicators: Net Profit” and the “trend: 

Decrease”. Similarly, the latter also belongs to the event classification of the industry chain, and the concept 

of "Increase in Iron Ore Prices" can be derived through the combination of the “industry chain: Iron Ore”, 

the “indicator: Prices”, and the “trend: Increase”. It is worth noting that SPG does not immediately derive 

all possible combinations of concepts but rather derives the corresponding event concepts based on the actual 

occurrence of event instances, in order to avoid meaningless or logically inconsistent concept systems. 

2. Solving the Inability to Express the Entire Event Context through Conceptual Causal 

Modeling 

Building upon the solution to the previous problem, SPG can establish causal relations within the 

conceptual classification system to express the context of events, as shown in Figure 50. The red dashed 

lines represent the event propagation automatically generated in the event instance layer after the activation 

of the “leadTo” predicate in the causal knowledge layer. 

 
Figure 50: Causal Reasoning 

In Figure 50, the diagram is divided into two layers from bottom to top: the event instance layer and the 

conceptual knowledge layer. The event instance layer represents specific event instances, such as the 

"Brazilian dam collapse incident," which can be mapped to the conceptual knowledge layer using the method 

described in 1). The conceptual knowledge layer has the ability to express causal relations at the conceptual 

level. In this example, the following causal relations have been defined in the conceptual knowledge layer: 

a “major production accident” in a company leads to either an “increase in iron ore prices” or a “decrease in 

steel net profit” in the industry chain to which the company belongs. When the Brazilian dam collapse 

incident occurs and is classified as a “major production accident” concept, the event inference transitions 
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from the event instance layer to the conceptual knowledge layer. Based on the defined conceptual knowledge, 

the event propagation mechanism generates a new industry chain event instance at the event instance layer. 

This new event instance is then classified as the concept of “increase in iron ore prices”, making it an 

“increase in iron ore prices event”. The conceptual knowledge can be derived from event induction or 

generalized from causal patterns, guiding the classification and propagation of specific event instances. For 

example, a “major production accident” leads to the occurrence of an “industry chain event”, which belongs 

to either the concept of “increase in iron ore prices” or the concept of “decrease in steel net profit”. The rule 

template is as follows: 

RULE1: Major Production Accident -leadTo-> Industry Chain Event  

RULE2: Industry Chain Event -belongTo-> Increase in Iron Ore Prices  

RULE3: Industry Chain Event -belongTo-> Decrease in Steel Net Profit 

At this point, events can be classified into derived concepts, allowing the derived concepts that satisfy 

the rules to form causal relations and ultimately form the causal relations in the conceptual knowledge layer. 

This expression guides the classification and propagation of the event instances from top to bottom, enabling 

the expression of the entire event context in the conceptual knowledge layer and the event instance layer. In 

the example above, the conceptual knowledge layer expresses that accidents lead to a decrease in profits for 

the downstream companies in the industry to which the entities involved in the accident belong. When 

concretized at the event instance layer, this means that the “Brazilian dam collapse incident” leds to a 

decrease in profits for several steel companies. 

It is important to note that SPG provides a framework for causal description, and the causal relations 

between concepts still need to be created by users based on their business characteristics. More detailed 

examples of concept induction methods will be published in future articles of the SPG, and addressing 

specific practices. 

3. Built-in Logical Expressions to Address Data Unconstrained by Reasoning Logic 

SPG expresses conceptual classification logic using the logical constraints. Taking the dam collapse 

incident as an example, the following rules can be defined to classify this event: 

Define (s:FinancialEvent)-[p:belongTo]->(o:`FinancialEventTaxonomy/MajorIndustrialAccidents`) { 

    Structure { 

        (s)-[:std.subject]->(company:Company) //Associated company instances 

    } 

    Constraint { 

        R1("Subject experienced a Industrial accident"): s.behavior == 'Industrial accident' 

        R2("Subject company has a market share exceeding x% with significant impact"): company.marketShare > x%  

    } 

} 

The above rules can be interpreted as follows: when a safety accident occurs and the market share of 

the company exceeds x%, then the event is classified as a major production accident in the corresponding 
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industry. Similarly, the “leadTo” relation between concepts can also be logically expressed. When event “e1” 

occurs, it will generate and activate another event “e2”. 

Define (s:`FinancialEventTaxonomy/MajorIndustrialAccidents`)-[p:leadTo]->(o:`IndustryChainEventTaxonomy/ 

priceIncrease `) { 

    Structure { 

        (s)-[:std.subject]->(company:Company)-[:industry]->[I:Industry)  

    } 

    Constraint { 

    } 

    Action { 

        createNode( 

            type=IndustryChainEvent 

            value={ 

                subject=I.name 

         index='price' 

         trend='increase' 

            } 

        ) 

    } 

} 

After a new event instance is generated through event propagation, the new event instance can trigger 

the classification of the event again. The classification of the event can be done using combination concepts. 

Here is an example that uses the combination concepts of “IndustryChain”, “Index”, and “Trend” to define 

the classification of the industry chain event mentioned earlier. 

Define (s: IndustryChainEvent)-[p:belongTo]->(o: `IndustryChainEventTaxonomy`/`IndustryChain` + `Index` + `Trend`) { 

    Structure { 

    } 

    Constraint { 

        o = s.subject + s.index + s.trend 

    } 

} 

4. Logical Properties and Relations to Address External Dependency on Auxiliary Data 

In the example mentioned above, the Company entity has a property called “marketShare”, which 

represents the market share of the company. In practice, this data may come from other systems and may not 

exist in the knowledge graph. In such cases, the logical rules can be used to define the source of the data. An 

example is as follow: 

Define (s:Compnay)-[p:marketShare]->(o:Float) { 

  Structure { 

    (s) 

  } 

 Constraint { 

    o = callForMarketShares(s.id, 'marketShare') 

  } 

} 
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In line 6, the code “callForMarketShares” refers to a user-defined operator that can retrieve the market 

share information from other systems. Unlike the previous approach of importing all data into the knowledge 

graph, this method does not require additional copying of data from other systems. It ensures logical 

consistency of the data. This approach addresses the dependency on external data for decision-making in the 

context of enterprise causal knowledge graph scenarios. 

5. SPG Addresses the Lack of Interpretability in Reasoning Conclusions 

In this example, SPG decouples the propagation issue between the conceptual level and the instance 

level through the definition of event concepts. It also ensures the consistency between the logical rules and 

data. Following the four-quadrant approach, SPG ensures interpretability in the following four aspects: 

• Interpretability of the generalization and derived logic of the event concept ontology 

At the level of causal modeling, a structured representation scheme is defined for various types of events 

and entity types. At the same time, a top-down approach is used to define the concepts of entity ontology 

(such as product classification) and event ontology in a hierarchical system. Each more granular event 

concept is realized through filling in the event slot values, which concretizes the higher-level event concept 

(for example, in Figure 50, the “Product Price Change Event” is a specialization concept of the “Industry 

Chain Event”, and fills the slot of “Indicator” with the specific value of “Price”. On the other hand, the 

“Increase in Net Profit” provides further constraints on the concept of “Net Profit Change” in the slot of 

“Trend”. By defining slots and concretizing slot values in a top-down manner, the interpretability of concept 

semantics is achieved through the combination of slot value properties. Clear generalization and derived 

logic exist between upper and lower concepts. 

• Interpretability of the logical relations in causal knowledge  

By defining the RULE patterns, the logical relations of causality, succession, and spatiotemporal 

relations between conceptual events are defined. For example, “an increase in product price” does not 

necessarily lead to “a decrease in product profit”. Through the summary of the domain expert knowledge or 

analysis of numerous actual cases, rules such as “an increase in the price of upstream raw materials leads to 

a decrease in net profit of downstream products” can be obtained due to the impact of supply and demand 

relations in the industry chain. Furthermore, Based on the relations between upstream and downstream in 

the industry chain, specific causal logic, such as price increase-profit decrease, can be derived and generated 

in batches. For example, “increase in iron ore price -> decrease in steel profit” and “increase in steel price -> 

decrease in automobile profit”. By defining and applying rules for generating multiple causal knowledge and 

combining them, an interpretable causal knowledge system can be generated for specific industries and 

scenarios. 

• Traceability of the factual causality and spatiotemporal succession between event instances  

The event subject, occurrence time, location of each sub-event composing the factual chain, as well as 

the factual associations, semantic associations, spatiotemporal co-occurrence or succession relations 

between these elements, provide the basis for the establishment and attribution traceability of the relations 
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between event instances. In Figure 51, the dam collapse incident at Vale on January 25th, 2019, and the 

subsequent rise in iron ore prices to a high level in July of the same year, along with the decrease in net profit 

of Baosteel and Fangda Special Steel, are supported by news reports and financial disclosures. Through the 

“belongTo” relation between the event instance and the event concept, the “leadTo” relation in the causal 

knowledge layer, and the industry chain relation between iron ore, steel, and automobiles, it can be explained 

clearly that these events are not independent but rather form a factual chain that can be explained by the 

causal relations within the industry chain. 

• Interpretability of the inductive and deduction between factual relations and causal 

knowledge 

 At the level of causal knowledge, the logical relations and common sense relations between abstract 

and specific ontological concepts are defined. In the level of factual instances, the structured and 

semantically standardized representation of instance knowledge and the factual associations between events 

are defined. The representation of factual relations and causal knowledge is decoupled, while using standard 

predicates in SPG, such as “belongTo”, “isA”, and “isInstanceOf”, providing a unified representation method 

for the deduction from conceptual events to specific facts and the induction from specific factual relations 

to causal logic. This association and logical interpretation between abstract concepts and specific facts, can 

help validate the correctness of causal relations using existing factual relation samples in specific scenarios, 

and assist in the exploration of hidden causal and succession relations between events using causal logic. 

For example, by using the generated causal pattern “increase in steel price - decrease in automobile net profit” 

and integrating the equity penetration relations of the automobile companies in the enterprise knowledge 

graph, automobile companies with profit decline risks can be discovered. 

9.2 Comparison between SPG and LPG in the context of Enterprise 

Causal Knowledge Graph  

Table 13: Comparison of capabilities between SPG and LPG in the context of enterprise causal knowledge 

graph 
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As shown in the table above, SPG provides a framework for causal expression. In comparison with 

LPG, it effectively represents the propagation chain of the events, providing a new practical approach for 

rapid analysis and response to the impacts of financial events. 

9.3 SPG-Driven Risk Mining Knowledge Graph  

In Chapter 2, the challenges of applying the risk mining knowledge graph were discussed, focusing on 

the maintenance and management of data as well as the high cost of understanding. The entities and relations 

mentioned in Chapter 2, can be classified into two categories based on their data generation methods: (1) 

Basic data, which comes from original table data. Entities such as “Person”, “Phone”, “Cert”, “Device”, 

“App”, etc., and relations such as “Person-has->Phone” and “Person-has->Cert”, can be directly derived 

from the original tables. (2) Derived data, which are generated from basic data or other derived data. For 

example, relations such as “Person-samePhone->Person” and “Person-developed-App” are derived logically. 

Below, we will discuss in detail how the SPG solution can be applied to the risk mining knowledge graph, 

and addressing the challenges previously mentioned. 

1. To address the issue of data inflation and increased costs after converting raw data into graph 

data. The original table has significant differences compared to the basic data. For example, the original 

table only provides the User table and the Application table, without the Device, Certificate, or Phone tables. 

These pieces of are usually present as fields in the User table and the Application table. Building a knowledge 

graph using LPG typically requires users to perform additional data transformation or provide mapping 

operations. SPG, on the other hand, offers standardized property capabilities to simplify user data modeling 

and reduce data cleaning costs. Here is an example of how to represent phones, devices, and certificates as 

standard properties: 

CREATE TYPE (std.Phone {  

 value STRING REGEX '^1([38]\d|5[0-35-9]|7[3678])\d{8}$'  

}); 

CREATE TYPE (std.Cert {  

 value STRING REGEX '^[a-f0-9]{32}$'  

}); 

CREATE TYPE (std.Device {  

 value STRING REGEX '^([0-9A-Fa-f]{2}[:-]){5}([0-9A-Fa-f]{2})$'  

}); 

To further define other entities:  

CREATE NODE ( User { 

  id STRING,                                 //User primary key 

  name STRING,                           //User name 

  type STRING,                             //User type, individual or legal entity 

  hasPhoneNum std.Phone,           //Using standard property here 

  hasCert std.Cert,                         //Using standard property here 

  hasDevice std.Device                 //Using standard property here 

}); 
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CREATE NODE ( App { 

  id STRING, 

  riskType STRING,                   // Risk flag 

  hasCert std.Cert,                       // Using standard property here 

  installDevice std.Device          // Using standard property here 

}); 

Due to the use of the standard property to replace relation modeling, there is no explicit definition of 

relations. Only the import of the user information table and the application information table is required. It 

can be observed that using the modeling capabilities of SPG, simplifies the modeling cost of entities such as 

Device and Certificate, and also reduces the cost of the data cleaning. 

2. Resolve the issue of duplicate data preparation caused by different business characteristics and 

support the reuse of knowledge graphs across different businesses. The risk mining knowledge graph 

requires the use of transfer data and equity data. SPG provides knowledge fusion capabilities, the entities 

and relations from other knowledge graphs can be referenced and integrated into the current knowledge 

graph by utilizing self-defined entity resolution operators, to accommodate the specific requirements of the 

business scenario. These entities and relations can be referenced from the funding knowledge graph and 

equity knowledge graph. For example, as shown in Figure 51, the fusion of the funding knowledge graph 

and the risk mining knowledge graph is depicted, where the textual structure of the instance is represented 

as: Type/PropertyName = PropertyValue. 

 
Figure 51: Knowledge Fusion across Knowledge Graphs 

“FusedPerson” is derived from the entity linking and resolution operators of “UserAccount” from the 

funding knowledge graph and “Person” from the risk mining knowledge graph. To achieve this unified 

relation, two stages need to be defined: entity linking and entity resolution. It is worth noting that 

“FusedPerson” is only a declaration of the type and the association of the operators, and it does not generate 

actual fusion instances, which greatly reduces computation and storage costs. 

1) Entity linking: This stage primarily defines how the instances of “UserAccount” and “Person” are 

corresponded using the entity linking operators. It can be a one-to-one correspondence or a many-to-one 
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correspondence. In this example, it is a many-to-one correspondence. Entity linking across knowledge 

graphs can be achieved by applying rule-based linking operators. The pseudocode for the operator interface 

definition is as follows: 

@BaseOp.register("FusedPersonLinkOp", bind_to="FusedPerson", is_api_iface=True) 

class FusedPersonLinkOp(EntityLinkingOp):  
 def eval(self, record: Vertex) -> EvalResult[List[Vertex]]: 

       pass 

2) Entity resolution: In this example, entity resolution is achieved using the resolution operators. Based 

on the conditional expression rules, the properties, relations can be filtered and processed for the successfully 

mapped instances of “UserAccount” and “Person”. The pseudocode for the operator interface definition is 

as follows: 

@BaseOp.register("PersonFuseOp", bind_to="FusedPerson", is_api_iface=True) 

class FusedPersonFuseOp(EntityFuseOp):  
    def eval( 

        self, source_vertex: Vertex, target_vertexes: List[Vertex] 

    ) -> EvalResult[List[Vertex]]: 

       pass 

3) Addressing the issue of inconsistency in relation data due to logical dependencies. SPG provides 

capabilities for derived relations and derived data. Let's take the example of “same phone number” and “same 

person” as the logical dependencies. 

Define (s:Person)-[p:samePhone]->(o:Person) { 

    Structure { 

        (s)-[:hasPhoneNum]->(w:std.Phone]<-[:hasPhoneNum]-(o) 

    } 

    Constraint {   } 

} 

The pre-defined relations types can be reused in the logical rules of KGDSL. For example, the “same 

person” relation can be defined as two individuals having the same phone number and the same device 

simultaneously. 

Define (s:Person)-[p:sameUser]->(o:Person) { 

    Structure { 

        (s)-[:hasPhoneNum]->(o),  (s)-[:hasDevice]->(o) 

    } 

    Constraint {   } 

} 

The complex corporate control relations can also be defined through transitive, as shown in Figure 52, 

where the textual structure of the instance is represented as: Type/PropertyName = PropertyValue. 
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Figure 52: Example of holdShare Relations 

// Define the holding proportion first, the transitive predicate requires that the types in the GraphStructure must be the same. 

Define transitive (s:Company)-[p:holdShares]->(o:Company) { 

    Structure { 

// The graph structure must follow the following pattern to express transitivity 

        (s)-[p1:holdShares]->(c:Company), (c)-[p2:holdShares]->(o) 

    } 

    Constraint { 

        // Group and aggregate by entity s and o to obtain all actual equity. 

        real_rate("The actual holding proportion") = group(s,o).sum(p1.shares*p2.shares) 

        p.shares = real_rate  // assigning the actual shares 

    } 

} 

Define (s:Person)-[p: indirectHolding]->(o:Company) { 

    Structure { 

        (s)-[p1:holdShares]->(c:Company)-[p2:holdShares]->(o)    // Indirect control of company o through company c 

    } 

    Constraint { 

        R1("Direct controlling equity ratio must be greater than 50%"): p1.shares > 0.5 

R2(“Indirect controlling equity ratio must be greater than 50%”): p2.shares > 0.5 

    } 

} 

By extension, all relations can be completed based on expert rules. 

4) Overcoming the problem of continuously expanding and ultimately unmaintainable schema 

and data in the face of iterative business evolution. 

In traditional LPG models, data and schema are tightly coupled. If there are changes in the business, 

the schema needs to be modified accordingly, resulting in high costs. However, SPG provides dynamic 

classification capabilities based on concepts, allowing for business extensions at the conceptual level, as 

shown in Figure 53. 
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Figure 53: Concept-based dynamic entity classification in the risk mining knowledge graph 

We introduce a new reasoning predicate called “belongTo”, which links the entities and concepts that 

meet the rule requirements. For example, when an App is confirmed as a fraudulent App, its developer can 

be classified as a suspicious fraudster. Taking "Fraudster" as an example, the rule for dynamic classification 

can be defined as follows: 

Define (s:Person)-[p:belongTo]->(o:TaxonomyOfRiskUser/Fraudster) { 

    Structure { 

// The person developing fraudulent applications is a fraudster. 

        (A:App)-[:developer]->(s) 

    } 

    Constraint { 

        R1("It is a fraudulent application"): A.type == 'fraud' 

    } 

} 

The association between concepts and entities can be described using expert rules, which helps address 

the problem of tight coupling between business and actual data. This approach avoids the need to modify 

underlying data when there are changes in the business requirements and reduces the direct perception of the 

changes in underlying data at the business application layer. By strongly binding concepts with the business, 

concepts can be used as types for the business users. Taking the example mentioned above, let's consider 

using "Fraudster" as a entity type. Here's an example of how it can be implemented: 

MATCH  

(u:TaxonomyOfRiskUser/Fraudster)  

RETURN  

u 

Other scenarios for SPG-based risk mining applications. 

1. Knowledge Query. 

When a certain app is identified as a gambling application (possibly from user complaints or other 

security events), we can find the organization behind the app through the following query statement. 

MATCH  

     (a:App)-[:developer|boss]->(u:Person) 

WHERE 

a.id = 'gambling application 1' 



Semantic-enhanced Programmable Knowledge Graph (SPG) White paper 

 95 

RETURN  

u 

2. Fusion learning of neural symbols 

The fusion of deep learning and rules has always been a hot and challenging research topic. Deep 

learning can solve many representation learning problems, such as image classification tasks, while rules 

(symbolic logic) can handle many explicit reasoning problems. There are two main application directions 

for existing neural-symbol integration in reasoning. 

1) Fusion methods of rules and neural networks. 

From the perspective of rule priors, these methods can be classified into two categories: 

First category: constraining model structure with rules. Typical methods include DeepProbLog [23], 

neuro-symbolic forward reasoning (NSFS) [24], Logical Neural Networks (LNN) [25], and LogicMP [26].  

Second category: constraining objectives with rules. The rules are treated as prior knowledge and are 

incorporated into the objective function as a penalty term. Typical methods include SemanticLoss [27] and 

NCLF [28].  

Whether it is the first category or the second category, the first-order predicate forms are required as 

the input form for rules. Various rules mentioned in this paper can be converted to and from the first-order 

predicate forms, for example. 

Define (s:Person)-[p:belongTo]->(o:Fraudster) { 

    Structure { 

        (A:App)-[:developer]->(s) 

    } 

    Constraint { 

        R1("It is a fraudulent application"): A.type == 'fraud' 

    } 

} 

The conversion of first-order predicates is as follows: 

forall s: exits a:  developer(a, s) & type(a) == 'fraud' -> belongTo(s) == Fraudster 

In addition, the expertise of business experts, which belongs to hard rules, can easily lead to low recall 

rates. In LogicMP, specific rule content can be softened to improve rule coverage.  

2) Representing relations between symbols as a graph structure and performing reasoning 

through graph algorithms.  

In this example, the graphical form generated by logical rule definitions can be input into the graph 

algorithms for training. This approach decouples neural and symbolic methods through the form of a graph, 

ensuring scalability and flexibility. 

  



Semantic-enhanced Programmable Knowledge Graph (SPG) White paper 

 96 

 

Figure 54: Combine the SPG with the GCN algorithm 

9.4 Comparison between SPG and LPG in the Risk Mining Knowledge 

Graph  

From the perspectives of knowledge construction, knowledge application, and knowledge evolution, 

we can compare the advantages and disadvantages of SPG and LPG. 

Table 14: Comparison of abilities between SPG and LPG in the Risk Mining Knowledge Graph 

 

SPG focuses on addressing the cost issue for users of the knowledge graph in the field of risk control. 

It effectively improves user efficiency and reduces usage costs in all stages of knowledge construction, 

knowledge application, and knowledge evolution. 

9.5 Summary  

This chapter primarily discussed the applications of SPG in the enterprise causal knowledge graph and 

the risk mining knowledge graph. In the enterprise causal knowledge graph, SPG provides an event 

expression framework that effectively describes the impact propagation relations of events, resulting in 

timely and effective conclusions, which complements the limitations of LPG in causal knowledge graph 

applications. In the risk mining knowledge graph, SPG primarily addresses the issues of user usage costs 

and efficiency, solving problems such as the difficulty of ensuring data consistency, high evolution costs, 

and high comprehension costs in practical applications of LPG. 
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Chapter 10 SPG Embracing the New Era of Cognitive 

Intelligence  

The future trend of enterprise digitalization and intelligent upgrading is to build knowledge based on 

the massive business data accumulated in the enterprise's big data system, promoting data knowledgeization. 

By integrating business data with AI systems, business intelligence can be achieved. Property graphs have 

the advantage of compatibility with big data systems, and SPG, based on property graph, aims to accelerate 

the data knowledgeization and the organic integration of knowledge and AI systems. This chapter combines 

the core capabilities and two case studies introduced in previous chapters to summarize and analyze the 

strengths, limitations, opportunities, and challenges of SPG. 

10.1 SWOT Analysis of SPG Compared to Property Graphs 

Based on the previous descriptions, we can analyze the strengths, weaknesses, opportunities, and threats 

of SPG from the four quadrants of SWOT.  

• Strengths of SPG. (1) SPG has a low cost and is compatible with big data architecture, allowing 

for the rapid construction of domain knowledge graphs based on structured data accumulated in 

enterprise-level applications. (2) The hierarchical semantic model of SPG supports the continuous 

evolution of incomplete knowledge graphs, meeting the requirements of rapid business 

deployment, continuous data accumulation and improvement, and gradual technological 

application in industrial applications. (3) SPG overcomes the semantic limitations of LPG and 

effectively connects big data with LPG node/edge structures, enhancing semantic connections and 

better integrating AI technologies. 

• Weaknesses of SPG. SPG is still in the growth stage, and there are some compromises and 

weaknesses in the design of its capabilities, which we need to continuously overcome in the later 

stage. (1) How does dynamic classification achieve inheritance and extension? Currently, the 

dynamic classification model effectively addresses the granularity issue of types but has 

limitations in application, making it difficult to extend properties under new subclasses. (2) 

Continuous improvement of the built-in semantic structures of the entity is necessary. The current 

built-in semantic structures in the entity model are not sufficiently enriched, with definitions and 

constraints limited to event subjects/objects/times and hierarchical concepts. To meet the demands 

of controlled generation and interpretable reasoning, clear expression of built-in semantic 

structures within entities requires ongoing improvement in collaboration with downstream 

applications. (3) Instance-concept linkage reasoning model. While SPG possesses some inductive 

reasoning capabilities from instances to concepts, there is still significant room for improvement 

in the co-conduction of concepts and instances and the deductive reasoning from concepts to 

instances. This requires continuous optimization through the application and refinement of various 

causal knowledge graphs. 
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• Opportunities for SPG. (1) Filling the gap in semantic frameworks for enterprise knowledge 

graph applications. RDF/OWL, due to their complexity, have not effectively landed in enterprises. 

Establishing enterprise-level standardization to facilitate cross-entity knowledge semantic 

alignment, and to promote the circulation, interoperability, exchange, and sharing of knowledge 

more conveniently. (2) Driving the development of a universal engine architecture for building 

knowledge graphs. This promotes the democratization and accessibility of the knowledge graph 

technology. Large-scale applications in various technical fields rely on standardization and 

framework development, as seen in search engines, deep learning, and cloud computing. (3) 

Bridging the gap between knowledge graphs and LLMs. Enterprises can quickly incubate/fine-

tune new pre-training models based on Transformer or open-source LLMs. Using the standardized 

symbols of SPG, efficient knowledge injection, associative prompts, knowledge queries, and other 

tasks can be achieved during the pre-training, SFT/RLHF, and inference stages, and forming a 

stable paradigm for the interaction between knowledge graphs and LLMs. Additionally, by data 

knowledgeization, we aim to construct a symbolic world domain knowledge system that 

complements and is equivalent to the neural network-based LLM knowledge system. 

• Challenges for SPG. (1) Performance challenges in scaling applications, particularly during the 

knowledge construction phase. The performance overhead of extraction models and entity linking 

can significantly impact the efficiency of large-scale knowledge graph construction. (2) Further 

refinement of system capabilities. The capabilities of the SPG system need continuous 

optimization in conjunction with more business scenario and applications. (3) Cultivating 

semantic understanding in users' mental models. On one hand, there is a need to continuously 

improve users' understanding of semantics, and on the other hand, efforts should be made to reduce 

users' perception of semantics. 

 
Figure 55: SWOT Analysis of SPG 
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10.2 Problem Resolution and Outstanding Issues from Chapter 2  

Table 15: Fundamental Problems of Knowledge Management Based on LPG and the Resolution Status by 

SPG 

 
 

It is important to note that Table 15 primarily lists the fundamental problems of knowledge management 

based on LPG and the resolution status by SPG. It mainly focuses on the semantic aspects of entities and 

logical predicate semantics. The programmable framework and complex knowledge reasoning are built upon 

a knowledge management framework in a virtuous cycle. They are not included in the basic capabilities of 

knowledge management and are not listed in this table. However, they will be further described in the future 

release plan in Chapter 11. 
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Chapter 11 Outlook on the Future of SPG 

This whitepaper has addressed the challenges faced by enterprise-level knowledge management and 

discussed the higher requirements for knowledge semantic representation and engine frameworks due to 

changes in demand paradigms in enterprise-level knowledge graph applications. In Chapter 1, we 

summarized some of the key problems that still exist in the development of knowledge graph technology: 

• Lack of unified semantic representation. Currently, strong semantic knowledge graphs have not 

achieved industrial implementation based on RDF/OWL, while weak semantic property graphs 

(LPG) are widely used in industrial-grade knowledge graphs. 

• Multiple tools but lack of standardization. The development of customized extraction 

algorithms/entity linking algorithms for each data set, graph database-backed graph storage, 

representation learning tools, fuzzy retrieval tools, knowledge query tools, and other tools have 

led to significant dispersion and inconvenience in the application of knowledge graph technology. 

In order to achieve large-scale industrial application of any complex technology, it is necessary to have 

a unified technical framework that shields complex technical details and supports rapid deployment of new 

businesses. It also requires a modular architecture that allows for layering and decoupling of domain models 

and core engines, enabling fast migration to new domains. The same applies to knowledge graphs. The 

development of knowledge graph technology needs to keep up with the times. SPG defines an industrial-

grade, user-friendly knowledge semantic framework for strong semantic knowledge graphs. It helps 

enterprises accelerate the knowledgeization of massive amounts of data. Through the unified technical 

framework and engine architecture provided by the SPG knowledge engine, the technology can be 

standardized, democratized, and made accessible to a wide range of users. 

Looking towards the future, knowledge graphs have vast application potential. On one hand, as the best 

modeling practice for structured data, knowledge graphs can unify data modeling from various perspectives 

such as machines, algorithms, engineering, business, and operations. They can build next-generation data 

architectures in line with the concept of data fabric, accelerating the knowledgeization of massive enterprise 

data, connecting data silos, discovering implicit relations, unlocking the full value of data, and reducing the 

cost of finding and using data, ultimately bringing greater growth opportunities for businesses. On the other 

hand, knowledge graphs complement LLMs perfectly. Knowledge graphs have characteristics such as strong 

facts, weak generalization, strong interpretability, low computational cost, and high construction cost. In 

contrast, LLMs have weak facts, strong generalization, poor interpretability, high computational cost, and 

strong semantic understanding. In the future, the goal is to achieve efficient cooperation and 

complementarity between unified knowledge symbol representation and engine architecture and LLMs. 

Through the advancement of LLM technology, the cost of knowledge graph construction can be further 

reduced, accelerating data knowledgeization and providing additional domain knowledge for controlled 

generation based on LLMs. The construction of massive common-sense domain knowledge bases can also 

accelerate the progress of general artificial intelligence. Realizing the integration and complementarity of 
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the knowledge graphs and LLMs strongly relies on a comprehensive knowledge graph and LLM technology 

stack. Currently, LLM technology has matured, and with the strong semantic knowledge graph framework 

defined by SPG, it is expected to form a seamless application framework that can be seamlessly integrated 

with LLMs. This framework will enable industrial-level, generalizable, highly robust, and interpretable 

comprehensive artificial intelligence technologies based on knowledge graphs and LLMs. 

 
Figure 56: Future Outlook on the Dual-Drive Technical Paradigm of SPG and LLM 

The fusion of symbolic logic and neural networks has always been a research hotspot in the industry. 

One common approach is to use neural networks to learn the rules and relations in symbolic logic, enabling 

them to better handle complex logical problems. Another approach is to use symbolic logic to guide the 

learning process of neural networks, improving their accuracy and interpretability. Knowledge graphs, as a 

typical representative of symbolic logic, have unique advantages in structural representation, semantic 

characterization, and knowledge association. The unified semantic framework provided by SPG can provide 

them with stronger vitality. Currently, the fusion of neural networks and symbolic logic mainly occurs in the 

knowledge reasoning stage. With the emergence of LLMs, new ideas are provided for the integration of 

symbolic logic and neural networks. On one hand, knowledge graphs, as the underlying support for semantic 

representation of symbolic logic and knowledge data management, can leverage the powerful semantic 

understanding capabilities of LLMs and the strong structure and semantics of knowledge graphs to automate 

prompts and sample construction. This can help the knowledge graphs form a unified knowledge extraction 

framework and accelerate the knowledgeization of data. On the other hand, in the content generation stage, 

applying domain knowledge data with strong semantic constraints can effectively avoid the problem of 

hallucinations and nonsense in LLMs. These issues are expected to be accelerated addressed in the SPG + 

LLM paradigm. We will continue to improve the expressive capabilities of SPG through industrial practices 

and enhance LLM through SPG to achieve alignment with objective facts, effectively avoiding/reducing 

model hallucinations. At the same time, LLM will also enhance SPG to improve the conversion efficiency 
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of data knowledgeization. We are committed to building a next-generation artificial intelligence engine 

driven and enhanced by both SPG and LLM. 

Table 16: Future Release Plan for SPG 

 

In the future, we will continue to upgrade SPG. Table 16 represents our planned release content, and 

the release timeline will be updated on the SPG official account: “Semantic-Enhanced Programmable 

Knowledge Graph Framework”. We welcome your attention and interaction, and together, we can explore 

the industrial-grade knowledge graph architecture paradigm. 
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