
Different
for AI applications

languages 

11%

4%

8%

12%
65%

Python Typescript C# Go Others

Market Share

Aleksei Kolesnikov
Staff Software Engineer

Language Ecosystem Analysis, In-depth
comparison of C#, Go, Rust, Python, and

JavaScript on AI Field

Aspect C# Go (Golang) Rust Python JavaScript

AI Ecosystem Limited: ML.NET
minor DL
support

Limited: Gorgonia,
TF Go bindings

Limited:
Nascent
(tch-rs,
burn)

Full:
TensorFlow,
PyTorch

Moderate
(TensorFlow.js)

LLM Libraries Full:
SemanticKernel,
langchain.net

Moderate:  
langchain-go

Minimal
(langchain-
rust)

Full: Autogen,
langchain,
crew.ai

Moderate:
langchain.js,
composio

Agentic
Frameworks

Moderate:
Autogen

Basic using go-
ports and
community
libraries

Niche Full:
LangGraph,
Crew.AI

Moderate:
Composio

Document
Analysis
Capabilities

Moderate: Azure
DocumentProce
ssing, Tesseract

Basic: go-fitz, go-
pdf, unidoc

Limited
(rust-pdf,
lopdf)

Full: PyPDF2,
spaCy, NLTK

Moderate: PDF.js,
Instructor-js

Performance Good (JIT
compiled)

Excellent Best-in-
class for
LLM Proxies

Moderate,
GIL-limited

Moderate

Community &
Enterprise
Support

Moderate,
Enterprise-
focused

Growing (cloud-
native emphasis)

Niche Largest
(academia/
industry)

Strong (web dev,
limited AI)

Research
Capabilities
with Jupyter

Moderate:
Jupyter with
Interactive

Moderate: GoNB,
GopherNotes

Niche Full Full: IJavascript

Aleksei Kolesnikov
Staff Software Engineer

Top Prompt Techniques
per market

Market Top Techniques Language Alignment

Finance Chain-of-Thought, Negative Example C# (38%), Python (42%)

Healthcare Role Prompting, Few-Shot Learning Python (55%), JS (30%)

E-Commerce Template Prompts, Dynamic Context JS (48%), Go (22%)

Legal Context Management, Role Priming Python (60%), C# (25%)

Property Management Chain-of-Thoughts, Zero-Shot —

1. Iterative Prompt Versioning
Prompt history with A/B testing metrics (response accuracy, latency, cost).

2. Language-Specific Optimization
 C#,Go, TypeScript: Leverage strong typing for prompt template validatio
 Python: Utilize Jupyter notebooks for rapid experimentatio
 JS: Implement browser-based prompt preview systems

3. Cross-Platform Monitoring
 Token usage per language runtim
 Model-specific error pattern
 Context window utilization rates

Aleksei Kolesnikov
Staff Software Engineer

Quality Framework 
for LLM Applications

Phase Key Components
(Markdown Grid)

Verification Methods

Development - Prompt validation pipelines

 - Context safety checks

Unit testing with adversarial examples

Testing - Bias detection suites

 - Hallucination metrics

Differential testing across models

Deployment - Real-time monitoring dashboards

 - Fallback mechanism triggers

Canary deployments with shadow traffic

Aleksei Kolesnikov
Staff Software Engineer

This slide outlines a comprehensive quality assurance
approach across different development phases:
> Development: Implement code & prompt validation pipelines and context
safety checks to ensure AI behavior aligns with project goals. Unit Testing,
General Prompt Testing, SonarQube.

> Testing: Employ bias detection suites, hallucination metrics, and ability to find
prompt vulnerabilities. While traditional End-to-end automation and smoke testing
are valuable, consider more dynamic testing strategies for rapidly evolving AI
systems.

> Deployment: Utilize real-time monitoring dashboards, fallback mechanism, and
models rotation.

Remember: Quality assurance in AI development requires continuous adaptation
and vigilance across all phases.

Key Focus 
Areas Grid

Field Priority Prompt Tasks

Finance Precision constraints, Regulatory checks

Healthcare Role enforcement, Data anonymization

E-Commerce Template consistency, Personalization

Cross-Platform Context management, Error handling

Aleksei Kolesnikov
Staff Software Engineer

Priorities vary across different sectors:
> Finance: Prioritize precision constraints and regulatory compliance checks to
maintain accuracy and legal adherence.

> Healthcare: Focus on strict role enforcement and data anonymization to
protect sensitive patient information.

> E-commerce: Emphasize template consistency and personalization to enhance
user experience and drive conversions.

> Cross-Platform: Implement robust context management and error handling
applicable across all markets.

LLM Fine-tuning
Consider dedicated Python/ML specialists
for LLM fine-tuning, if deemed necessary

for your project goals

PETF Bitsandbytes 
(for quantization)

HuggingFace
Accelerate

Hugging Face
Transformers

Vast majority for LoRA 
fine-tuning Libraries 

are in Python

Aleksei Kolesnikov
Staff Software Engineer

Executive
& Key Takeaway

Summary 

Aleksei Kolesnikov
Staff Software Engineer

While Python leads in ML development and fine-tuning,
production-ready AI systems can be effectively built and
deployed using various languages. Choose based on your
team's skills, specific application needs, and performance
requirements.

Important
1. Production Readiness

 All major programming languages (Python, C#, Go, etc.) are capable of supporting
AI and LLM applications in production

 Startups and companies choose languages based on their team's expertise and
specific use cases.

2. RAG Applications
 For Retrieval-Augmented Generation (RAG) applications, using the team's

preferred language is often the best choice
 Python is not mandatory; prioritize the language your team is proficient in and can

easily hire for.

3. Fine-Tuning Considerations

 Fine-tuning LLMs may require a dedicated ML team and a separate budget
 Carefully evaluate the necessity and goals of fine-tuning before committing

resources
 Python dominates in ML libraries and tools, making it the primary choice for fine-

tuning tasks.

4. Production Performance

 For high-throughput production environments, Go and C# may offer superior
performance

 These languages provide better options for fine-grained tuning and profiling in
production systems.

