
Discussion: Defaults/defeasible constraints in the LKB
DELPH-IN 2025

Spencer Brooks

July 8, 2025

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 1 / 21



Outline

1 Problem Overview

2 Questions

3 Discussion

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 2 / 21



Problem Overview

Goals for Today

Today, I’m hoping to:

develop my understanding of the problem and its known challenges
(in theory and application)

hear thoughts on some specific questions

facilitate general thoughts and discussion

In addition, I’m eager to hear:

about readings, grammars, and other resources you would suggest I
examine

other guidance/thoughts

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 3 / 21



Problem Overview

Problem Overview

Sag, Wasow, and Bender (2003) [eng] use defeasible constraints, aka
defaults, in lexical rule and lexeme type definitions

Example from a lexeme type definition:

Overridden by specific lexical types: The Seattle Reign

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 4 / 21



Problem Overview

Problem Overview

Where it gets interesting: defeasible identity

(Motivating) example from lexical rule type definition:

Emerson, 2021: ‘Would be nice: The ability to say “identify
everything other than that which is specified as different between
mother and daughter”’

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 5 / 21



Problem Overview

Problem Overview

Example: copy up the value of FORM and all other head features and
constraint on the head type; copy up predications

Because of the inherited defeasible identity of SYN, we wouldn’t have
to explicitly copy: FORM, INF, AUX, POL, INV, AGR, ...

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 6 / 21



Problem Overview

Problem Overview

Current LKB reality: when you override a defeasible constraint, info is
thrown away instead of pushed down

(Is this accurate?)

Instead, Emerson 2021: Do YADU (a default unification operation
from Copestake and Lascarides 1996) forwards and backwards, which
(somehow) both expands feature paths and assigns the correct
identities:

From Emerson 2021:

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 7 / 21



Questions

Questions

How does Guy’s proposal expand types?

Why (intuitively) should Guy’s proposal get us the desired unification result?

Why are there ???’s for a COMPS...HEAD value in Guy’s 2021 example?

Can we do anything about the potential for YADU meltdown?

Can we sidestep problems by providing detailed error messages?

Are incompatibilities with append lists expected?

Are incompatibilities with min-types expected?

Are persistent defaults in-scope?

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 8 / 21



Discussion

How does Guy’s proposal expand types?

My understanding is a key reason to do backward YADU is to get
access to (here) CASE and MOD for the forward step. How do you
get these?

Emerson, 2021: The “pushed down” identity combines something
more specific and something less specific:

1 Existence of new feature path: more specific
2 Identity constraint on new path: less specific

Is this a key question or in the weeds?

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 9 / 21



Discussion

How does Guy’s proposal expand types?

From Emerson 2021:

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 10 / 21



Discussion

Why (intuitively) should Guy’s proposal get us the desired
unification result?

In particular, what’s the intuition behind switching between default
and nondefault constraints?

From Emerson 2021:

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 11 / 21



Discussion

Why are there ???’s for a COMPS...HEAD value in Guy’s
2021 example?

Emerson, 2021: The HEAD value gets lost in this example, because
CASE is part of head; can’t identify HEAD while changing CASE

Would we want to identify the HEAD type here? I’m not sure what
the bottom line here is.

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 12 / 21



Discussion

Why are there ???’s for a COMPS...HEAD value in Guy’s
2021 example?

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 13 / 21



Discussion

Can we do anything about the potential for YADU
meltdown?

Ann: There’s a question of where a re-entrancy is overriden at the
top level. . . There was an idea that you could set up lexical rules
where F is coindexed with G, even if there is some overriding of that
coindexation (e.g. F.H G.H, but keep F.W = G.W). But there are
cases where this can’t work. When you start relying on that stuff, the
YADU algorithm goes into complete meltdown. So the danger of
using defaults in the grammar is that it can grind to a complete halt.
One of those cases is complicated re-entrancies.

Francis Bond: if we’re only using defaults before compiling the
grammar, can we check if it’s okay?

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 14 / 21



Discussion

Can we do anything about the potential for YADU
meltdown?

Ann: It won’t melt-down at run-time. But YADU will just go away
and not come back. Can’t give you a static checker. Just to quickly
say what’s going on in YADU, in the case of a Nixon diamond, you
generate the possibilities - it’s okay if there’s 2, but not if there’s
thousands. Mostly it’s okay, but it can sometimes blow up.

Dan: If the feedback to the developer was relatively quick (even just a
blue screen of death), it could help increase the clarity of our
grammars, and that could be incremental. So fixing the easy things
would be a major boost. For the more complicated recursive parts,
there’s less benefit.

...

Ann: I don’t think discovering this could be speeded up. Put
something in and check it, then go onto the next thing.

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 15 / 21



Discussion

Can we sidestep problems by providing detailed error
messages?

In the context of discussion about min-types and persistent defaults:

MWG: This is all convenience to the grammar writer and not
increasing the power of the grammar. Seems like we’re getting caught
up on edge cases. What if we were able to detect edge cases and
warn the grammar engineer about things that aren’t supported. The
difficult things are also difficult for the grammar engineer to reason
about and that defeats the purpose.

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 16 / 21



Discussion

Can we sidestep problems by providing detailed error
messages?

Guy: I guess you could compile the grammar and then check back
through the feature structure to where the default identity constraint
was introduced and then see whether any of the types along the way
have further subtypes – and then say these are things that might
potentially go wrong.

EMB: I think the edge cases are ones where the grammarian hasn’t
provided enough info to get what they want. So hard to check for at
the level of sorry we won’t compile that grammar, but maybe helpful
as Guy says to flag where there might be more to think about.

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 17 / 21



Discussion

Are incompatibilities with min-types expected?

Woodley: The min types might be an unfortunate interaction with
the default unification idea. Default constraint says make the whole
structure identified, and if you don’t do things right, what you’ll end
up with is expansion only to the min type that lets you write the
change, but then lose the upper-level identity and when the min type
gets expanded to the full type, lose the other features. In Guy’s
example, suppose that noun is a type with more features than CASE
and MOD, but you’ve only got noun-min.
...
Dan: ...a consequence of the forwards-backwards approach is that you
need a fully realized feature structure by the time you’re done. All
features need to be expanded is a scary conception to me, since it
means I [can’t] use the min features to reduce the size of the things
being manipulated at parse time... If you did this to apply
defeasibility, could you go back up to min-types before parse time...?

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 18 / 21



Discussion

Are interactions with append lists expected?

Emily: So this might not be simpler in the end: less typing, more
debugging. If we are telling the grammarian “it’s all taken care of” we
have to be very clear about what isn’t.

Guy: True, but there is also a lot of reasoning about the thicket of
types.

Olga (in chat): Similar considerations for the append lists.

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 19 / 21



Discussion

Are persistent defaults in-scope?

(I don’t think so, but if so, what are persistent defaults exactly?)

Guy: From what I understand, YADU has two settings for each
defeasible constraint, to say whether it’s persistent or not. All are
kept as defaults within the type hierarchy, but at the instances, you
say whether it remains default or becomes strict.

...

EMB: Also as a grammarian I can’t reason about persistent defaults.

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 20 / 21



Discussion

Thank you!

Spencer Brooks Discussion: Defaults/defeasible constraints in the LKB 21 / 21


	Problem Overview
	Questions
	Discussion

