-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
64 lines (57 loc) · 2.41 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import streamlit as st
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import altair as alt
from streamlit.type_util import is_sympy_expession
from OPC_Sensor.Machine_Learning.error_analysis import error_anaysis
from OPC_Sensor.Machine_Learning.r2_score import r2_score
from OPC_Sensor.Deep_Learning.error_analysis_dl import error_anaysis_dl
from OPC_Sensor.Deep_Learning.accuracy import accuracy
from OPC_Sensor.Machine_Learning.actual_vs_predicted import actual_vs_predicted
from PJ_Sensor.Machine_Learning.error_analysispj import error_anaysispj
from OPC_Sensor.Deep_Learning.actual_vs_predicted_dl import actual_vs_predicteddl
from PJ_Sensor.Machine_Learning.r2_scorepj import r2_scorepj
from PJ_Sensor.Machine_Learning.actual_vs_predictedpj import actual_vs_predictedpj
from PJ_Sensor.Deep_Learning.accuracy_pj import accuracy_pj
from PJ_Sensor.Deep_Learning.actual_vs_predicted_dl_pj import actual_vs_predicteddl_pj
from PJ_Sensor.Deep_Learning.error_analysis_dl_pj import error_anaysis_dl_pj
data_set = st.sidebar.radio('Choose Data Set ?', ('OPC Sensor', 'PJ Sensor'))
model_type = st.sidebar.radio(
'Choose Model Type ?', ('Machine Learning Models', 'Neural Network Models'))
if model_type == 'Machine Learning Models':
t = st.sidebar.radio(
'Choose One ?', ('Error Analysis', 'R2 Score', 'Actual vs Predicted Plot'))
if t == "Error Analysis":
if data_set == 'OPC Sensor':
error_anaysis()
elif data_set == 'PJ Sensor':
error_anaysispj()
elif t == "R2 Score":
if data_set == 'OPC Sensor':
r2_score()
elif data_set == 'PJ Sensor':
r2_scorepj()
elif t == "Actual vs Predicted Plot":
if data_set == 'OPC Sensor':
actual_vs_predicted()
elif data_set == 'PJ Sensor':
actual_vs_predictedpj()
elif model_type == 'Neural Network Models':
t = st.sidebar.radio(
'Choose One ?', ('Error Analysis', 'Accuracy', 'Actual vs Predicted Plot'))
if t == 'Error Analysis':
if data_set == 'OPC Sensor':
error_anaysis_dl()
else:
error_anaysis_dl_pj()
if t == 'Accuracy':
if data_set == 'OPC Sensor':
accuracy()
else:
accuracy_pj()
if t == 'Actual vs Predicted Plot':
if data_set == 'OPC Sensor':
actual_vs_predicteddl()
else:
actual_vs_predicteddl_pj()