forked from yilong2001/berts.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistilbert.cpp
404 lines (328 loc) · 16.2 KB
/
distilbert.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#include "tokenization.h"
#include "distilbert.h"
#include "bertbase.h"
#include "ggml.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#include <regex>
#include <thread>
#include <algorithm>
#include <iomanip>
#include <limits>
namespace bert {
//
// Loading and setup
//
struct BertBaseCtx * distilbert_load_from_file(const char *fname) {
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname);
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname);
return nullptr;
}
// verify magic
{
uint32_t magic;
fin.read((char *)&magic, sizeof(magic));
if (magic != 0x67676d6c)
{
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname);
return nullptr;
}
}
BertBaseCtx * bert_base_ctx = new BertBaseCtx;
//bert_base_ctx->tokenizer = new FullTokenizer(fvocabname, false);
DistilBertClassifierModel *model = new DistilBertClassifierModel();
bert_base_ctx->model = model;
BertVocab & vocab = bert_base_ctx->vocab;
// load hparams
{
auto &hparams = bert_base_ctx->hparams;
fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *)&hparams.max_position_embeddings, sizeof(hparams.max_position_embeddings));
fin.read((char *)&hparams.hidden_dim, sizeof(hparams.hidden_dim));
fin.read((char *)&hparams.n_heads, sizeof(hparams.n_heads));
fin.read((char *)&hparams.n_layers, sizeof(hparams.n_layers));
fin.read((char *)&hparams.pad_token_id, sizeof(hparams.pad_token_id));
fin.read((char *)&hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *)&hparams.n_labels, sizeof(hparams.n_labels));
fin.read((char *)&hparams.f16, sizeof(hparams.f16));
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: max_position_embeddings = %d\n", __func__, hparams.max_position_embeddings);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: hidden_dim = %d\n", __func__, hparams.hidden_dim);
printf("%s: n_heads = %d\n", __func__, hparams.n_heads);
printf("%s: n_layers = %d\n", __func__, hparams.n_layers);
printf("%s: n_labels = %d\n", __func__, hparams.n_labels);
printf("%s: f16 = %d\n", __func__, hparams.f16);
}
// load vocab
{
std::unordered_map<std::string, uint64_t> *_vocab = new std::unordered_map<std::string, uint64_t>();
int32_t n_vocab = bert_base_ctx->hparams.n_vocab;
std::string word;
for (int i = 0; i < n_vocab; i++)
{
uint32_t len;
fin.read((char *)&len, sizeof(len));
word.resize(len);
fin.read((char *)word.data(), len);
vocab.token_to_id[word] = i;
vocab._id_to_token[i] = word;
(*_vocab)[word] = ((uint64_t)(i));
}
bert_base_ctx->tokenizer = new FullTokenizer(_vocab, false);
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = GGML_TYPE_COUNT;
switch (bert_base_ctx->hparams.f16) {
case 0:
wtype = GGML_TYPE_F32;
break;
case 1:
wtype = GGML_TYPE_F16;
break;
case 2:
wtype = GGML_TYPE_Q4_0;
break;
case 3:
wtype = GGML_TYPE_Q4_1;
break;
default:
{
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
__func__, fname, bert_base_ctx->hparams.f16);
bert_free(bert_base_ctx);
return nullptr;
}
}
size_t model_mem_req = 0;
{
const auto &hparams = bert_base_ctx->hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layers;
const int max_position_embeddings = hparams.max_position_embeddings;
const int n_vocab = hparams.n_vocab;
const int hidden_dim = hparams.hidden_dim;
const int n_labels = hparams.n_labels;
// Calculate size requirements
model_mem_req += n_embd * n_vocab * ggml_type_sizef(wtype); // word_embeddings
model_mem_req += n_embd * max_position_embeddings * ggml_type_sizef(wtype); // position_embeddings
model_mem_req += 2 * n_embd * ggml_type_sizef(GGML_TYPE_F32); // ln_e_*
model_mem_req += 4 * n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_*
model_mem_req += 4 * n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // kqvo weights
model_mem_req += 4 * n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // kqvo bias
model_mem_req += 2 * n_layer * (n_embd * hidden_dim * ggml_type_sizef(wtype)); // ff_*_w
model_mem_req += n_layer * (hidden_dim * ggml_type_sizef(GGML_TYPE_F32)); // ff_i_b
model_mem_req += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ff_o_b
model_mem_req += n_embd * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // pre_classifier
model_mem_req += n_labels * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // pre_classifier
model_mem_req += (5 + 16 * n_layer) * 512; // object overhead
printf("%s: ggml ctx size = %6.2f MB\n", __func__, model_mem_req / (1024.0 * 1024.0));
}
// create the ggml context
{
struct ggml_init_params params = {
.mem_size = model_mem_req * 4,
.mem_buffer = NULL,
.no_alloc = false,
};
model->_ctx = ggml_init(params);
if (!model->_ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
bert_free(bert_base_ctx);
return nullptr;
}
}
auto &ctx = model->_ctx;
// prepare memory for the weights
{
const auto &hparams = bert_base_ctx->hparams;
const int n_embd = hparams.n_embd;
const int n_layers = hparams.n_layers;
const int n_labels = hparams.n_labels;
const int hidden_dim = hparams.hidden_dim;
const int max_position_embeddings = hparams.max_position_embeddings;
const int n_vocab = hparams.n_vocab;
model->bert.layers.resize(n_layers);
model->bert.embeddings.word_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model->bert.embeddings.position_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, max_position_embeddings);
model->bert.embeddings.ln_e_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model->bert.embeddings.ln_e_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model->tensors["distilbert.embeddings.word_embeddings.weight"] = model->bert.embeddings.word_embeddings;
model->tensors["distilbert.embeddings.position_embeddings.weight"] = model->bert.embeddings.position_embeddings;
model->tensors["distilbert.embeddings.LayerNorm.weight"] = model->bert.embeddings.ln_e_w;
model->tensors["distilbert.embeddings.LayerNorm.bias"] = model->bert.embeddings.ln_e_b;
for (int i = 0; i < n_layers; ++i)
{
auto &layer = model->bert.layers[i];
layer.ln_att_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_att_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_out_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.q_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.k_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.k_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.v_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.o_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.o_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ff_i_w = ggml_new_tensor_2d(ctx, wtype, n_embd, hidden_dim);
layer.ff_i_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_dim);
layer.ff_o_w = ggml_new_tensor_2d(ctx, wtype, hidden_dim, n_embd);
layer.ff_o_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".attention.q_lin.weight"] = layer.q_w;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".attention.q_lin.bias"] = layer.q_b;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".attention.k_lin.weight"] = layer.k_w;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".attention.k_lin.bias"] = layer.k_b;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".attention.v_lin.weight"] = layer.v_w;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".attention.v_lin.bias"] = layer.v_b;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".attention.out_lin.weight"] = layer.o_w;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".attention.out_lin.bias"] = layer.o_b;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".sa_layer_norm.weight"] = layer.ln_att_w;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".sa_layer_norm.bias"] = layer.ln_att_b;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".ffn.lin1.weight"] = layer.ff_i_w;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".ffn.lin1.bias"] = layer.ff_i_b;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".ffn.lin2.weight"] = layer.ff_o_w;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".ffn.lin2.bias"] = layer.ff_o_b;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".output_layer_norm.weight"] = layer.ln_out_w;
model->tensors["distilbert.transformer.layer." + std::to_string(i) + ".output_layer_norm.bias"] = layer.ln_out_b;
}
model->pre_cls_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
model->pre_cls_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model->cls_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_labels);
model->cls_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_labels);
model->tensors["pre_classifier.weight"] = model->pre_cls_w;
model->tensors["pre_classifier.bias"] = model->pre_cls_b;
model->tensors["classifier.weight"] = model->cls_w;
model->tensors["classifier.bias"] = model->cls_b;
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
printf("%s: ", __func__);
while (true)
{
int32_t n_dims;
int32_t length;
int32_t ftype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (fin.eof())
{
break;
}
int64_t nelements = 1;
int64_t ne[2] = {1, 1};
for (int i = 0; i < n_dims; ++i)
{
int32_t ne_cur;
fin.read(reinterpret_cast<char *>(&ne_cur), sizeof(ne_cur));
ne[i] = ne_cur;
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model->tensors.find(name.data()) == model->tensors.end())
{
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
bert_free(bert_base_ctx);
return nullptr;
}
auto tensor = model->tensors[name.data()];
if (ggml_nelements(tensor) != nelements)
{
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
bert_free(bert_base_ctx);
return nullptr;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1])
{
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%lld, %lld], expected [%lld, %lld]\n",
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
bert_free(bert_base_ctx);
return nullptr;
}
if (0)
{
static const char *ftype_str[] = {
"f32",
"f16",
"q4_0",
"q4_1",
};
printf("%24s - [%5lld, %5lld], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ftype_str[ftype], ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
}
size_t bpe = 0;
switch (ftype)
{
case 0:
bpe = ggml_type_size(GGML_TYPE_F32);
break;
case 1:
bpe = ggml_type_size(GGML_TYPE_F16);
break;
case 2:
bpe = ggml_type_size(GGML_TYPE_Q4_0);
assert(ne[0] % 64 == 0);
break;
case 3:
bpe = ggml_type_size(GGML_TYPE_Q4_1);
assert(ne[0] % 64 == 0);
break;
default:
{
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
bert_free(bert_base_ctx);
return nullptr;
}
};
if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor))
{
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %llu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements * bpe);
bert_free(bert_base_ctx);
return nullptr;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
// printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
total_size += ggml_nbytes(tensor);
if (++n_tensors % 8 == 0)
{
printf(".");
fflush(stdout);
}
}
printf(" done\n");
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors);
}
fin.close();
// Calculate space requirements for setting up context buffers later
{
const auto &hparams = bert_base_ctx->hparams;
// bert_vocab_id tokens[] = {0, 1, 2, 3};
// TODO: We set the initial buffer size to 32MB and hope it's enough. Maybe there is a better way to do this?
bert_base_ctx->buf_compute.resize(hparams.MEM_SIZE);
//bert_eval(bert_base_ctx, &hparams, 1, tokens, 4, nullptr);
bert_base_ctx->max_batch_n = hparams.MAX_BATCH_N;
// TODO: Max tokens should be a param?
int32_t N = hparams.max_position_embeddings;
bert_base_ctx->mem_per_input = 1.1 * (bert_base_ctx->mem_per_token * N); // add 10% to account for ggml object overhead
}
printf("%s: mem_per_token %zu KB, mem_per_input %lld MB\n", __func__, bert_base_ctx->mem_per_token / (1 << 10), bert_base_ctx->mem_per_input / (1 << 20));
return bert_base_ctx;
}
} // namespace end