-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp.py
176 lines (150 loc) · 6.03 KB
/
exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import argparse
import time
from os import path as osp
import numpy as np
import torch
import torch.nn.functional as F
import torch_geometric
import yaml
from tqdm import tqdm, trange
from hetsage.data import DataManager
from hetsage.model import Model
from hetsage.utils import (TB, flatten, init_random, print_metrics,
write_metrics)
def run_training(epochs, data_manager, model, optimizer, writer, device='cpu', weight_loss=False):
metrics = {}
with torch.no_grad():
loss, acc = run_iter(model,
data_manager,
data_manager.tng_loader,
device=device,
weight_loss=weight_loss)
metrics['acc/tng'] = acc
metrics['loss/tng'] = loss
loss, acc = run_iter(model,
data_manager,
data_manager.val_loader,
device=device,
weight_loss=weight_loss)
metrics['acc/val'] = acc
metrics['loss/val'] = loss
print_metrics(0, metrics)
write_metrics(0, metrics, writer)
writer.write_csv(metrics, 0)
final_metrics = {
'max-acc/val': 0,
'max-acc/tng': 0,
'min-loss/val': np.inf,
'min-loss/tng': np.inf,
}
for epoch in trange(1, 1 + epochs):
loss, acc = run_iter(model,
data_manager,
data_manager.tng_loader,
optimizer,
device=device,
weight_loss=weight_loss)
final_metrics['max-acc/tng'] = max(final_metrics['max-acc/tng'], acc)
final_metrics['min-loss/tng'] = min(final_metrics['min-loss/tng'], loss)
metrics['acc/tng'] = acc
metrics['loss/tng'] = loss
with torch.no_grad():
loss, acc = run_iter(model,
data_manager,
data_manager.val_loader,
device=device,
weight_loss=weight_loss)
final_metrics['max-acc/val'] = max(final_metrics['max-acc/val'], acc)
final_metrics['min-loss/val'] = min(final_metrics['min-loss/val'], loss)
metrics['acc/val'] = acc
metrics['loss/val'] = loss
print_metrics(epoch, metrics)
write_metrics(epoch, metrics, writer)
writer.write_csv(metrics, epoch)
write_metrics(epoch, final_metrics, writer)
return final_metrics
def run_iter(model, data_manager, data_loader, optimizer=None, device='cpu', weight_loss=False):
if optimizer is not None:
model.train()
else:
model.eval()
total_loss = 0
total_correct = 0
total_nodes = 0
timing = {
'forward': 0,
'backward': 0,
'data': 0,
'transfer': 0,
}
data_time = time.time()
for batch_size, n_id, adjs in tqdm(data_loader, leave=False):
timing['data'] += time.time() - data_time
transfer_time = time.time()
if isinstance(adjs, torch_geometric.data.sampler.Adj):
adjs = [adjs]
adjs = [adj.to(device, non_blocking=True) for adj in adjs]
node_map = data_manager.get_id_map(n_id)
node_map = {k: v.to(device, non_blocking=True) for k, v in node_map.items()}
targets = data_manager.get_targets(n_id[:batch_size, 0])
targets = targets.to(device, non_blocking=True)
if optimizer is not None:
# print_grad(model)
# zero_grad(model)
optimizer.zero_grad()
timing['transfer'] += time.time() - transfer_time
f_time = time.time()
out = model(node_map, adjs)
timing['forward'] += time.time() - f_time
loss = F.cross_entropy(out,
targets,
weight=data_manager.target_weights.to(device, non_blocking=True)
if weight_loss else None)
if optimizer is not None:
b_time = time.time()
loss.backward()
optimizer.step()
timing['backward'] += time.time() - b_time
total_loss += float(loss.detach()) * batch_size
y_pred = torch.argmax(out.detach(), dim=-1)
# print(out)
# print(y_pred)
# print(targets)
total_correct += float((y_pred == targets).sum())
total_nodes += batch_size
data_time = time.time()
loss = total_loss / total_nodes
acc = 100 * total_correct / total_nodes
# print('Timing stats:', timing)
return loss, acc
def main(args):
init_random(args.seed)
configs = yaml.safe_load(open(osp.join(args.logdir, 'config.yaml')))
device = torch.device(args.device)
data_params = configs['data_params']
data_manager = DataManager(args.graph, **data_params, workers=args.workers, seed=args.seed)
model_params = configs['model_params']
model = Model(data_manager.graph_info, data_manager.neighbor_steps, **model_params)
model = model.to(device)
opt_class = getattr(torch.optim, configs['optim'])
optimizer = opt_class(model.parameters(), **configs['optim_params'])
writer = TB(log_dir=osp.join(args.logdir, 'seed-' + str(args.seed)), purge_step=0)
metrics = run_training(args.max_epochs,
data_manager,
model,
optimizer,
writer,
device=device,
weight_loss=configs['weight_loss'])
writer.add_hparams(flatten(configs), metrics)
writer.close()
if __name__ == '__main__':
PARSER = argparse.ArgumentParser()
PARSER.add_argument('--logdir')
PARSER.add_argument('--graph')
PARSER.add_argument('--seed', type=int, default=0)
PARSER.add_argument('--workers', type=int, default=2)
PARSER.add_argument('--device', default='cuda:0')
PARSER.add_argument('--max-epochs', type=int, default=50)
ARGS = PARSER.parse_args()
main(ARGS)