-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtf_utils.py
116 lines (110 loc) · 4.3 KB
/
tf_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Filename: tf_utils.py
# License: LICENSES/LICENSE_APACHE
import tensorflow as tf
def pre_x_in(x_in, opt="4"):
"""
Input
x_in: B1K4
Output
X: B1KC
config.pre_x_in = 9
"""
if opt == "9":
x_shp = tf.shape(x_in)
xx = tf.transpose(tf.reshape(
x_in, (x_shp[0], x_shp[2], 4)), (0, 2, 1))
# Create the matrix to be used for the eight-point algorithm
X = tf.transpose(tf.stack([
xx[:, 2] * xx[:, 0], xx[:, 2] * xx[:, 1], xx[:, 2],
xx[:, 3] * xx[:, 0], xx[:, 3] * xx[:, 1], xx[:, 3],
xx[:, 0], xx[:, 1], tf.ones_like(xx[:, 0])
], axis=1), (0, 2, 1))
X = X[:, None]
elif opt == "3":
X = x_in
else:
X = x_in
return X
def topk(x_in, weights, num_top_k, verbose=False):
"""
x_in: BNK4
weights: BNK
num_top_k: int
"""
# rate
num_kp = tf.shape(weights)[2]
# num_top_divider = config.num_top_divider
# num_top_k = tf.to_int32(num_kp / num_top_divider)
B = tf.shape(weights)[0]
num_pairs = tf.shape(weights)[1]
values, mask = tf.nn.top_k(
weights, k=num_top_k, sorted=False)
# mask [B, 1, K]
B_ = tf.range(B)
num_pairs_ = tf.range(num_pairs)
num_top_k_ = tf.range(num_top_k)
index0, index1, index2 = tf.meshgrid(
B_, num_pairs_, num_top_k_, indexing="ij")
# index[index0, index1, topk]
index = tf.stack([index0, index1, mask], -1)
x_in = tf.gather_nd(x_in, index)
return x_in, index
def gcn(linout, weight=None, opt="vanilla"):
"""
Global Context Normalization:
linout: B1KC
weight: B1K1, default None. Precomputed weight
opt: "vanilla" is CN for CNe, "reweight_vanilla_sigmoid_softmax" is ACN for ACNe
"""
if opt == "vanilla":
var_eps = 1e-3
mean, variance = tf.nn.moments(linout, axes=[2], keep_dims=True)
linout = tf.nn.batch_normalization(
linout, mean, variance, None, None, var_eps)
elif opt == "reweight_vanilla_sigmoid_softmax":
if weight is None:
in_shp = [_s if _s is not None else - 1 for _s in linout.get_shape().as_list()]
with tf.variable_scope("reweight"):
in_channel = in_shp[-1]
# get W and b for conv1d.
out_channel, ksize = 2, 1
dtype = tf.float32
fanin = in_channel * ksize
W = tf.get_variable(
"weights", shape=[1, ksize, in_channel, out_channel], dtype=dtype,
initializer=tf.truncated_normal_initializer(stddev=2.0 / fanin),
)
b = tf.get_variable(
"biases", shape=[out_channel], dtype=dtype,
initializer=tf.zeros_initializer(),
)
cur_padding = "VALID"
data_format = "NHWC"
tf.summary.histogram("W_attention", W)
tf.summary.histogram("b_attention", b)
logits = tf.nn.conv2d(
linout, W, [1, 1, 1, 1], cur_padding, data_format=data_format)
logits = tf.nn.bias_add(logits, b, data_format=data_format)
softmax_logit = logits[..., :1]
sigmoid_logit = logits[..., -1:]
mask = tf.nn.sigmoid(sigmoid_logit)
tf.add_to_collection("logit_attention", sigmoid_logit)
tf.add_to_collection("logit_softmax_attention", softmax_logit)
eps = 0
weight = tf.exp(softmax_logit) * mask
weight = weight / (tf.reduce_sum(weight, 2, keep_dims=True) + eps)
tf.add_to_collection("attention", weight)
tf.summary.histogram("attention", weight)
# weight = log_tf_tensor(weight, name="attention")
# mean: B11C
mean = tf.reduce_sum(weight * linout, 2, keep_dims=True)
# variance: B1KC
variance = tf.square(linout - mean)
variance = tf.reduce_sum(weight * variance, 2, keep_dims=True)
var_eps = 1e-3
tf.add_to_collection("preNorm", linout)
linout = (linout - mean) / tf.sqrt(variance + var_eps)
tf.add_to_collection("posNorm", linout)
else:
raise ValueError("Don't support this type of gcn function")
return linout, weight