-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathops.py
476 lines (391 loc) · 13.5 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# ops.py ---
#
# Filename: ops.py
# Description:
# Author: Kwang Moo Yi
# Maintainer:
# Created: Tue Apr 3 14:09:17 2018 (-0700)
# Version:
# Package-Requires: ()
# URL:
# Doc URL:
# Keywords:
# Compatibility:
#
#
# Commentary:
#
#
#
#
# Change Log:
#
#
#
# Copyright (C)
# Visual Computing Group @ University of Victoria
# Computer Vision Lab @ EPFL
# Code:
import numpy as np
from six.moves import xrange
# ------------------------------------------------------------
# Tensorflow ops
def tf_get_shape_as_list(x):
return [_s if _s is not None else - 1 for _s in x.get_shape().as_list()]
def tf_quaternion_from_matrix(M):
import tensorflow as tf
m00 = M[:, 0, 0][..., None]
m01 = M[:, 0, 1][..., None]
m02 = M[:, 0, 2][..., None]
m10 = M[:, 1, 0][..., None]
m11 = M[:, 1, 1][..., None]
m12 = M[:, 1, 2][..., None]
m20 = M[:, 2, 0][..., None]
m21 = M[:, 2, 1][..., None]
m22 = M[:, 2, 2][..., None]
# symmetric matrix K
zeros = tf.zeros_like(m00)
K = tf.concat(
[m00 - m11 - m22, zeros, zeros, zeros,
m01 + m10, m11 - m00 - m22, zeros, zeros,
m02 + m20, m12 + m21, m22 - m00 - m11, zeros,
m21 - m12, m02 - m20, m10 - m01, m00 + m11 + m22],
axis=1)
K = tf.reshape(K, (-1, 4, 4))
K /= 3.0
# quaternion is eigenvector of K that corresponds to largest eigenvalue
w, V = tf.self_adjoint_eig(K)
q0 = V[:, 3, 3][..., None]
q1 = V[:, 0, 3][..., None]
q2 = V[:, 1, 3][..., None]
q3 = V[:, 2, 3][..., None]
q = tf.concat([q0, q1, q2, q3], axis=1)
sel = tf.reshape(tf.to_float(q[:, 0] < 0.0), (-1, 1))
q = (1.0 - sel) * q - sel * q
return q
def tf_matrix_from_quaternion(q, eps=1e-10):
import tensorflow as tf
# Make unit quaternion
q_norm = q / (eps + tf.norm(q, axis=1, keep_dims=True))
q_norm *= tf.constant(2.0 ** 0.5, dtype=tf.float32)
qq = tf.matmul(
tf.reshape(q_norm, (-1, 4, 1)),
tf.reshape(q_norm, (-1, 1, 4))
)
M = tf.stack([
1.0 - qq[:, 2, 2] - qq[:, 3, 3], qq[:, 1, 2] - qq[:, 3, 0],
qq[:, 1, 3] + qq[:, 2, 0], qq[:, 1, 2] + qq[:, 3, 0],
1.0 - qq[:, 1, 1] - qq[:, 3, 3], qq[:, 2, 3] - qq[:, 1, 0],
qq[:, 1, 3] - qq[:, 2, 0], qq[:, 2, 3] + qq[:, 1, 0],
1.0 - qq[:, 1, 1] - qq[:, 2, 2]
], axis=1)
return M
def tf_skew_symmetric(v):
import tensorflow as tf
zero = tf.zeros_like(v[:, 0])
M = tf.stack([
zero, -v[:, 2], v[:, 1],
v[:, 2], zero, -v[:, 0],
-v[:, 1], v[:, 0], zero,
], axis=1)
return M
def tf_unskew_symmetric(M):
import tensorflow as tf
v = tf.stack([
0.5 * (M[:, 7] - M[:, 5]),
0.5 * (M[:, 2] - M[:, 6]),
0.5 * (M[:, 3] - M[:, 1]),
], axis=1)
return v
# ------------------------------------------------------------
# Architecture related
def bn_act(linout, perform_gcn, perform_bn, activation_fn, is_training,
data_format):
import tensorflow as tf
""" Perform batch normalization and activation """
if data_format == "NHWC":
axis = -1
else:
axis = 1
# Global Context normalization on the input
if perform_gcn:
# Epsilon to be used in the tf.nn.batch_normalization
var_eps = 1e-3
# get mean variance for single sample (channel-wise, note that we omit
# axis=1 since we are expecting a size of 1 in that dimension)
mean, variance = tf.nn.moments(linout, axes=[2], keep_dims=True)
# Use tensorflow's nn.batchnorm
linout = tf.nn.batch_normalization(
linout, mean, variance, None, None, var_eps)
if perform_bn:
with tf.variable_scope("bn"):
linout = tf.layers.batch_normalization(
inputs=linout,
center=False, scale=False,
training=is_training,
trainable=True,
axis=axis,
)
if activation_fn is None:
output = linout
else:
output = activation_fn(linout)
return output
def pad_cyclic(tensor, paddings):
import tensorflow as tf
ndim = len(paddings)
for _dim, _pad in zip(xrange(ndim), paddings):
pad_list = []
if _pad[0] > 0:
# Padding to put at front
slice_st = [slice(None, None)] * ndim
slice_st[_dim] = slice(-_pad[0], None)
pad_list += [tensor[tuple(slice_st)]]
# Original
pad_list += [tensor]
if _pad[1] > 0:
# Padding to put at back
slice_ed = [slice(None, None)] * ndim
slice_ed[_dim] = slice(None, _pad[1])
pad_list += [tensor[tuple(slice_ed)]]
if len(pad_list) > 1:
# Concatenate to do padding
tensor = tf.concat(pad_list, axis=_dim)
return tensor
def conv1d_pad_cyclic(inputs, ksize, numconv, data_format="NCHW"):
in_shp = tf_get_shape_as_list(inputs)
ksize = 2 * (ksize // 2 * numconv) + 1
if data_format == "NCHW":
assert (ksize < in_shp[-1]) or (in_shp[-1] == -1)
if np.mod(ksize, 2) == 0:
paddings = [
[0, 0], [0, 0], [0, 0], [ksize // 2 - 1, ksize // 2]
]
else:
paddings = [
[0, 0], [0, 0], [0, 0], [ksize // 2, ksize // 2]
]
else:
assert (ksize < in_shp[-2]) or (in_shp[-2] == -1)
if np.mod(ksize, 2) == 0:
paddings = [
[0, 0], [0, 0], [ksize // 2 - 1, ksize // 2], [0, 0]
]
else:
paddings = [
[0, 0], [0, 0], [ksize // 2, ksize // 2], [0, 0]
]
inputs = pad_cyclic(inputs, paddings)
return inputs
def get_W_b_conv1d(in_channel, out_channel, ksize, dtype=None):
import tensorflow as tf
if dtype is None:
dtype = tf.float32
fanin = in_channel * ksize
W = tf.get_variable(
"weights", shape=[1, ksize, in_channel, out_channel], dtype=dtype,
initializer=tf.truncated_normal_initializer(stddev=2.0 / fanin),
# initializer=tf.random_normal_initializer(stddev=0.02),
)
b = tf.get_variable(
"biases", shape=[out_channel], dtype=dtype,
initializer=tf.zeros_initializer(),
)
# tf.summary.histogram("W", W)
# tf.summary.histogram("b", b)
return W, b
def conv1d_layer(inputs, ksize, nchannel, activation_fn, perform_bn,
perform_gcn, is_training, perform_kron=False,
padding="CYCLIC", data_format="NCHW",
act_pos="post"):
import tensorflow as tf
assert act_pos == "pre" or act_pos == "post"
# Pad manually
if padding == "CYCLIC":
if ksize > 1:
inputs = conv1d_pad_cyclic(
inputs, ksize, 1, data_format=data_format)
cur_padding = "VALID"
else:
cur_padding = padding
in_shp = tf_get_shape_as_list(inputs)
if data_format == "NHWC":
in_channel = in_shp[-1]
ksizes = [1, 1, ksize, 1]
else:
in_channel = in_shp[1]
ksizes = [1, 1, 1, ksize]
assert len(in_shp) == 4
# # Lift with kronecker
# if not is_first:
# inputs = tf.concat([
# inputs,
# kronecker_layer(inputs),
# ], axis=-1)
pool_func = None
self_ksize = ksize
do_add = False
# If pre activation
if act_pos == "pre":
inputs = bn_act(inputs, perform_gcn, perform_bn, activation_fn,
is_training, data_format)
# Normal convolution
with tf.variable_scope("self-conv"):
W, b = get_W_b_conv1d(in_channel, nchannel, self_ksize)
# Convolution in the valid region only
linout = tf.nn.conv2d(
inputs, W, [1, 1, 1, 1], cur_padding, data_format=data_format)
linout = tf.nn.bias_add(linout, b, data_format=data_format)
# Pooling Convolution for the summary route
if pool_func is not None:
with tf.variable_scope("neigh-conv"):
if not do_add:
linout = pool_func(
linout,
ksize=ksizes,
strides=[1, 1, 1, 1],
padding=cur_padding,
data_format=data_format,
)
else:
W_n, b_n = get_W_b_conv1d(in_channel, nchannel, 1)
# Convolution in the valid region only
linout_n = tf.nn.conv2d(
inputs, W_n, [1, 1, 1, 1], "VALID", data_format=data_format
)
linout_n = tf.nn.bias_add(
linout_n, b_n, data_format=data_format)
linout_n = pool_func(
linout_n,
ksize=ksizes,
strides=[1, 1, 1, 1],
padding=cur_padding,
data_format=data_format,
)
# # Crop original linout
# if ksize > 1:
# if np.mod(ksize, 2) == 0:
# crop_st = ksize // 2 - 1
# else:
# crop_st = ksize // 2
# crop_ed = ksize // 2
# linout = linout[:, :, :, crop_st:-crop_ed]
# Add to the original output
linout = linout + linout_n
# If post activation
output = linout
if act_pos == "post":
output = bn_act(linout, perform_gcn, perform_bn, activation_fn,
is_training, data_format)
return output
def conv1d_resnet_block(inputs, ksize, nchannel, activation_fn, is_training,
midchannel=None, perform_bn=False, perform_gcn=False,
padding="CYCLIC", act_pos="post", data_format="NCHW"):
import tensorflow as tf
# In case we want to do a bottleneck layer
if midchannel is None:
midchannel = nchannel
# don't activate conv1 in case of midact
conv1_act_fn = activation_fn
if act_pos == "mid":
conv1_act_fn = None
act_pos = "pre"
# Pass branch
with tf.variable_scope("pass-branch"):
# passthrough to be used when num_outputs != num_inputs
in_shp = tf_get_shape_as_list(inputs)
if data_format == "NHWC":
in_channel = in_shp[-1]
else:
in_channel = in_shp[1]
if in_channel != nchannel:
cur_in = inputs
# Simply change channels through 1x1 conv
with tf.variable_scope("conv"):
cur_in = conv1d_layer(
inputs=inputs, ksize=1,
nchannel=nchannel,
activation_fn=None,
perform_bn=False,
perform_gcn=False,
is_training=is_training,
padding=padding,
data_format=data_format,
)
orig_inputs = cur_in
else:
orig_inputs = inputs
# Conv branch
with tf.variable_scope("conv-branch"):
cur_in = inputs
# Do bottle neck if necessary (Linear)
if midchannel != nchannel:
with tf.variable_scope("preconv"):
cur_in = conv1d_layer(
inputs=cur_in, ksize=1,
nchannel=nchannel,
activation_fn=None,
perform_bn=False,
perform_gcn=False,
is_training=is_training,
padding=padding,
data_format=data_format,
)
cur_in = activation_fn(cur_in)
# Main convolution
with tf.variable_scope("conv1"):
# right branch
cur_in = conv1d_layer(
inputs=cur_in, ksize=ksize,
nchannel=nchannel,
activation_fn=conv1_act_fn,
perform_bn=perform_bn,
perform_gcn=perform_gcn,
is_training=is_training,
padding=padding,
act_pos=act_pos,
data_format=data_format,
)
# Main convolution
with tf.variable_scope("conv2"):
# right branch
cur_in = conv1d_layer(
inputs=cur_in, ksize=ksize,
nchannel=nchannel,
activation_fn=activation_fn,
perform_bn=perform_bn,
perform_gcn=perform_gcn,
is_training=is_training,
padding=padding,
act_pos=act_pos,
data_format=data_format,
)
# Do bottle neck if necessary (Linear)
if midchannel != nchannel:
with tf.variable_scope("postconv"):
cur_in = conv1d_layer(
inputs=cur_in, ksize=1,
nchannel=nchannel,
activation_fn=None,
perform_bn=False,
perform_gcn=False,
is_training=is_training,
padding=padding,
data_format=data_format,
)
cur_in = activation_fn(cur_in)
# Crop lb or rb accordingly
if padding == "VALID" and ksize > 1:
# Crop pass branch results
if np.mod(ksize, 2) == 0:
crop_st = ksize // 2 - 1
else:
crop_st = ksize // 2
crop_ed = ksize // 2
if data_format == "NHWC":
orig_inputs = orig_inputs[:, :, crop_st:-crop_ed, :]
else:
orig_inputs = orig_inputs[:, :, :, crop_st:-crop_ed]
return cur_in + orig_inputs
#
# ops.py ends here