-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQNMatrix.py
47 lines (36 loc) · 1.44 KB
/
QNMatrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from __future__ import division
import numpy as np
class QNMatrix:
def __init__(self, value_n, value_quality):
self.value_n = value_n
self.value_quality = value_quality
# Initialize Arrays
self.matrix_qn = np.zeros(shape=(value_n * 8, value_n * 8))
self.matrix_q = np.array(
[[16, 11, 10, 16, 24, 40, 51, 61],
[12, 12, 14, 19, 26, 58, 60, 55],
[14, 13, 16, 24, 40, 57, 69, 56],
[14, 17, 22, 29, 51, 87, 80, 62],
[18, 22, 37, 56, 68, 109, 103, 77],
[24, 35, 55, 64, 81, 104, 113, 92],
[49, 64, 78, 87, 103, 121, 120, 101],
[72, 92, 95, 98, 112, 100, 103, 99]])
# Compute QF
def get_qf(self):
if self.value_quality >= 50:
return (200 - 2 * self.value_quality) / 100
else:
return (5000 / self.value_quality) / 100
# Compute Q1
def get_quantization_q1(self):
return np.rint(self.get_qf() * self.matrix_q)
# Compute QN
def get_qn(self):
q1 = self.get_quantization_q1()
# Create the QN Matrix
for x in range(0, q1.shape[0]):
for j in range(0, q1.shape[1]):
for v in range(x * self.value_n, x * self.value_n + self.value_n):
for t in range(j * self.value_n, j * self.value_n + self.value_n):
self.matrix_qn[v][t] = q1[x][j]
return self.matrix_qn