-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathOLGModel7.m
326 lines (264 loc) · 19.5 KB
/
OLGModel7.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
%% OLG Model 7: Analyzing the OLG Model
% This is just the exact same thing as OLG Model 6 up until line 252. From
% then it looks at a variety of model outputs to give you an idea of some
% of the various commands that exist. It looks at some inequality
% statistics, and also how to simulate panel data.
%% Begin setting up to use VFI Toolkit to solve
% Lets model agents from age 20 to age 100, so 81 periods
Params.agejshifter=19; % Age 20 minus one. Makes keeping track of actual age easy in terms of model age
Params.J=100-Params.agejshifter; % =81, Number of period in life-cycle
% Grid sizes to use
n_d=51; % Endogenous labour choice (fraction of time worked)
n_a=301; % Endogenous asset holdings
% Exogenous labor productivity units shocks (next two lines)
n_z=15; % AR(1) with age-dependent params
vfoptions.n_e=3; % iid
N_j=Params.J; % Number of periods in finite horizon
%% Parameters
% Discount rate
Params.beta = 0.96;
% Preferences
Params.sigma = 2; % Coeff of relative risk aversion (curvature of consumption)
Params.eta = 1.5; % Curvature of leisure (This will end up being 1/Frisch elasty)
Params.psi = 10; % Weight on leisure
Params.A=1; % Aggregate TFP. Not actually used anywhere.
% Production function
Params.alpha = 0.3; % Share of capital
Params.delta = 0.1; % Depreciation rate of capital
% Demographics
Params.agej=1:1:Params.J; % Is a vector of all the agej: 1,2,3,...,J
Params.Jr=46;
% Population growth rate
Params.n=0.02; % percentage rate (expressed as fraction) at which population growths
% Age-dependent labor productivity units
Params.kappa_j=[linspace(0.5,2,Params.Jr-15),linspace(2,1,14),zeros(1,Params.J-Params.Jr+1)];
% Life-cycle AR(1) process z, on (log) labor productivity units
% Chosen following Karahan & Ozkan (2013) [as used by Fella, Gallipoli & Pan (2019)]
% Originals just cover ages 24 to 60, so I create these, and then repeat first and last periods to fill it out
Params.rho_z=0.7596+0.2039*((1:1:37)/10)-0.0535*((1:1:37)/10).^2+0.0028*((1:1:37)/10).^3; % Chosen following Karahan & Ozkan (2013) [as used by Fella, Gallipoli & Pan (2019)]
Params.sigma_epsilon_z=0.0518-0.0405*((1:1:37)/10)+0.0105*((1:1:37)/10).^2-0.0002*((1:1:37)/10).^3; % Chosen following Karahan & Ozkan (2013) [as used by Fella, Gallipoli & Pan (2019)]
% Note that 37 covers 24 to 60 inclusive
% Now repeat the first and last values to fill in working age, and put zeros for retirement (where it is anyway irrelevant)
Params.rho_z=[Params.rho_z(1)*ones(1,4),Params.rho_z,Params.rho_z(end)*ones(1,4),zeros(1,100-65+1)];
Params.sigma_epsilon_z=[Params.sigma_epsilon_z(1)*ones(1,4),Params.sigma_epsilon_z,Params.sigma_epsilon_z(end)*ones(1,4),Params.sigma_epsilon_z(end)*ones(1,100-65+1)];
% Transitory iid shock
Params.sigma_e=0.0410+0.0221*((24:1:60)/10)-0.0069*((24:1:60)/10).^2+0.0008*((24:1:60)/10).^3;
% Now repeat the first and last values to fill in working age, and put zeros for retirement (where it is anyway irrelevant)
Params.sigma_e=[Params.sigma_e(1)*ones(1,4),Params.sigma_e,Params.sigma_e(end)*ones(1,4),Params.sigma_e(end)*ones(1,100-65+1)];
% Note: These will interact with the endogenous labor so the final labor
% earnings process will not equal that of Karahan & Ozkan (2013)
% Note: Karahan & Ozkan (2013) also have a fixed effect (which they call alpha) and which I ignore here.
% Conditional survival probabilities: sj is the probability of surviving to be age j+1, given alive at age j
% Most countries have calculations of these (as they are used by the government departments that oversee pensions)
% In fact I will here get data on the conditional death probabilities, and then survival is just 1-death.
% Here I just use them for the US, taken from "National Vital Statistics Report, volume 58, number 10, March 2010."
% I took them from first column (qx) of Table 1 (Total Population)
% Conditional death probabilities
Params.dj=[0.006879, 0.000463, 0.000307, 0.000220, 0.000184, 0.000172, 0.000160, 0.000149, 0.000133, 0.000114, 0.000100, 0.000105, 0.000143, 0.000221, 0.000329, 0.000449, 0.000563, 0.000667, 0.000753, 0.000823,...
0.000894, 0.000962, 0.001005, 0.001016, 0.001003, 0.000983, 0.000967, 0.000960, 0.000970, 0.000994, 0.001027, 0.001065, 0.001115, 0.001154, 0.001209, 0.001271, 0.001351, 0.001460, 0.001603, 0.001769, 0.001943, 0.002120, 0.002311, 0.002520, 0.002747, 0.002989, 0.003242, 0.003512, 0.003803, 0.004118, 0.004464, 0.004837, 0.005217, 0.005591, 0.005963, 0.006346, 0.006768, 0.007261, 0.007866, 0.008596, 0.009473, 0.010450, 0.011456, 0.012407, 0.013320, 0.014299, 0.015323,...
0.016558, 0.018029, 0.019723, 0.021607, 0.023723, 0.026143, 0.028892, 0.031988, 0.035476, 0.039238, 0.043382, 0.047941, 0.052953, 0.058457, 0.064494,...
0.071107, 0.078342, 0.086244, 0.094861, 0.104242, 0.114432, 0.125479, 0.137427, 0.150317, 0.164187, 0.179066, 0.194979, 0.211941, 0.229957, 0.249020, 0.269112, 0.290198, 0.312231, 1.000000];
% dj covers Ages 0 to 100
Params.sj=1-Params.dj(21:101); % Conditional survival probabilities
Params.sj(end)=0; % In the present model the last period (j=J) value of sj is actually irrelevant
% Warm glow of bequest
Params.warmglow1=0.3; % (relative) importance of bequests
Params.warmglow2=3; % bliss point of bequests (essentially, the target amount)
Params.warmglow3=Params.sigma; % By using the same curvature as the utility of consumption it makes it much easier to guess appropraite parameter values for the warm glow
% Taxes
Params.tau = 0.15; % Tax rate on labour income
% In addition to payroll tax rate tau, which funds the pension system we will add a progressive
% income tax which funds government spending.
% The progressive income tax takes the functional form:
% IncomeTax=eta1+eta2*log(Income)*Income; % This functional form is empirically a decent fit for the US tax system
% And is determined by the two parameters
Params.eta1=0.09; % eta1 will be determined in equilibrium to balance gov budget constraint
Params.eta2=0.053;
% Government spending
Params.GdivYtarget = 0.15; % Government spending as a fraction of GDP (this is essentially just used as a target to define a general equilibrium condition)
%% Some initial values/guesses for variables that will be determined in general eqm
Params.pension=0.4; % Initial guess (this will be determined in general eqm)
Params.r=0.1;
Params.AccidentBeq=0.03; % Accidental bequests (this is the lump sum transfer)
Params.G=0.2; % Government expenditure
% Params.eta1=0.09; % already set above
%% Grids
a_grid=10*(linspace(0,1,n_a).^3)'; % The ^3 means most points are near zero, which is where the derivative of the value fn changes most.
% First, z, the AR(1) with age-dependent parameters
[z_grid_J, pi_z_J] = discretizeLifeCycleAR1_FellaGallipoliPan(Params.rho_z,Params.sigma_epsilon_z,n_z,Params.J);
% z_grid_J is n_z-by-J, so z_grid_J(:,j) is the grid for age j
% pi_z_J is n_z-by-n_z-by-J, so pi_z_J(:,:,j) is the transition matrix for age j
% Second, e, the iid normal with age-dependent parameters
[e_grid_J, pi_e_J] = discretizeLifeCycleAR1_FellaGallipoliPan(zeros(1,Params.J),Params.sigma_e,vfoptions.n_e,Params.J); % Note: AR(1) with rho=0 is iid normal
% Because e is iid we actually just use
pi_e_J=shiftdim(pi_e_J(1,:,:),1);
% Similarly any (iid) e variable always has to go into vfoptions and simoptions
vfoptions.e_grid=e_grid_J;
vfoptions.pi_e=pi_e_J;
simoptions.n_e=vfoptions.n_e;
simoptions.e_grid=e_grid_J;
simoptions.pi_e=pi_e_J;
% Grid for labour choice
h_grid=linspace(0,1,n_d)'; % Notice that it is imposing the 0<=h<=1 condition implicitly
% Switch into toolkit notation
d_grid=h_grid;
%% Now, create the return function
DiscountFactorParamNames={'beta','sj'};
% Notice we use 'OLGModel6_ReturnFn'
ReturnFn=@(h,aprime,a,z,e,sigma,psi,eta,agej,Jr,J,pension,r,A,delta,alpha,kappa_j,warmglow1,warmglow2,AccidentBeq, eta1,eta2,tau)...
OLGModel6_ReturnFn(h,aprime,a,z,e,sigma,psi,eta,agej,Jr,J,pension,r,A,delta,alpha,kappa_j,warmglow1,warmglow2,AccidentBeq, eta1,eta2,tau);
%% Now solve the value function iteration problem, just to check that things are working before we go to General Equilbrium
disp('Test ValueFnIter')
tic;
[V, Policy]=ValueFnIter_Case1_FHorz(n_d,n_a,n_z,N_j, d_grid, a_grid, z_grid_J, pi_z_J, ReturnFn, Params, DiscountFactorParamNames, [], vfoptions);
toc
%% Initial distribution of agents at birth (j=1)
% Before we plot the life-cycle profiles we have to define how agents are
% at age j=1. We will give them all zero assets.
jequaloneDist=zeros([n_a,n_z,vfoptions.n_e],'gpuArray'); % Put no households anywhere on grid
jequaloneDist(1,floor((n_z+1)/2),floor((simoptions.n_e+1)/2))=1; % All agents start with zero assets, and the median shock
%% Agents age distribution
% Many OLG models include some kind of population growth, and perhaps
% some other things that create a weighting of different ages that needs to
% be used to calculate the stationary distribution and aggregate variable.
% Many OLG models include some kind of population growth, and perhaps
% some other things that create a weighting of different ages that needs to
% be used to calculate the stationary distribution and aggregate variable.
Params.mewj=ones(1,Params.J); % Marginal distribution of households over age
for jj=2:length(Params.mewj)
Params.mewj(jj)=Params.sj(jj-1)*Params.mewj(jj-1)/(1+Params.n);
end
Params.mewj=Params.mewj./sum(Params.mewj); % Normalize to one
AgeWeightsParamNames={'mewj'}; % So VFI Toolkit knows which parameter is the mass of agents of each age
%% Test
disp('Test StationaryDist')
StationaryDist=StationaryDist_FHorz_Case1(jequaloneDist,AgeWeightsParamNames,Policy,n_d,n_a,n_z,N_j,pi_z_J,Params,simoptions);
%% General eqm variables
GEPriceParamNames={'r','pension','AccidentBeq','G','eta1'};
%% Set up the General Equilibrium conditions (on assets/interest rate, assuming a representative firm with Cobb-Douglas production function)
% Note: we need to add z & e to FnsToEvaluate inputs.
% Stationary Distribution Aggregates (important that ordering of Names and Functions is the same)
FnsToEvaluate.H = @(h,aprime,a,z,e) h; % Aggregate labour supply
FnsToEvaluate.L = @(h,aprime,a,z,e,kappa_j) kappa_j*exp(z+e)*h; % Aggregate labour supply in efficiency units
FnsToEvaluate.K = @(h,aprime,a,z,e) a;% Aggregate physical capital
FnsToEvaluate.PensionSpending = @(h,aprime,a,z,e,pension,agej,Jr) (agej>=Jr)*pension; % Total spending on pensions
FnsToEvaluate.AccidentalBeqLeft = @(h,aprime,a,z,e,sj) aprime*(1-sj); % Accidental bequests left by people who die
FnsToEvaluate.IncomeTaxRevenue = @(h,aprime,a,z,e,eta1,eta2,kappa_j,r,delta,alpha,A) OLGModel6_ProgressiveIncomeTaxFn(h,aprime,a,z,e,eta1,eta2,kappa_j,r,delta,alpha,A); % Revenue raised by the progressive income tax (needed own function to avoid log(0) causing problems)
% General Equilibrium conditions (these should evaluate to zero in general equilbrium)
GeneralEqmEqns.capitalmarket = @(r,K,L,alpha,delta,A) r-alpha*A*(K^(alpha-1))*(L^(1-alpha)); % interest rate equals marginal product of capital net of depreciation
GeneralEqmEqns.pensions = @(PensionSpending,tau,L,r,A,alpha,delta) PensionSpending-tau*(A*(1-alpha)*((r+delta)/(alpha*A))^(alpha/(alpha-1)))*L; % Retirement benefits equal Payroll tax revenue: pension*fractionretired-tau*w*H
GeneralEqmEqns.bequests = @(AccidentalBeqLeft,AccidentBeq,n) AccidentalBeqLeft/(1+n)-AccidentBeq; % Accidental bequests received equal accidental bequests left
GeneralEqmEqns.Gtarget = @(G,GdivYtarget,A,K,L,alpha) G-GdivYtarget*(A*K^(alpha)*(L^(1-alpha))); % G is equal to the target, GdivYtarget*Y
GeneralEqmEqns.govbudget = @(G,IncomeTaxRevenue) G-IncomeTaxRevenue; % Government budget balances (note that pensions are a seperate budget)
% Note: the pensions general eqm condition looks more complicated just because we replaced w with the formula for w in terms of r. It is actually just the same formula as before.
%% Test
% Note: Because we used simoptions we must include this as an input
disp('Test AggVars')
AggVars=EvalFnOnAgentDist_AggVars_FHorz_Case1(StationaryDist, Policy, FnsToEvaluate, Params, [], n_d, n_a, n_z,N_j, d_grid, a_grid, z_grid_J,[],simoptions);
%% Solve for the General Equilibrium
heteroagentoptions.verbose=1;
p_eqm=HeteroAgentStationaryEqm_Case1_FHorz(jequaloneDist,AgeWeightsParamNames,n_d, n_a, n_z, N_j, 0, pi_z_J, d_grid, a_grid, z_grid_J, ReturnFn, FnsToEvaluate, GeneralEqmEqns, Params, DiscountFactorParamNames, [], [], [], GEPriceParamNames, heteroagentoptions, simoptions, vfoptions);
% p_eqm contains the general equilibrium parameter values
% Put this into Params so we can calculate things about the initial equilibrium
Params.r=p_eqm.r;
Params.pension=p_eqm.pension;
Params.AccidentBeq=p_eqm.AccidentBeq;
Params.G=p_eqm.G;
Params.eta1=p_eqm.eta1;
% Calculate a few things related to the general equilibrium.
[V, Policy]=ValueFnIter_Case1_FHorz(n_d,n_a,n_z,N_j, d_grid, a_grid, z_grid_J, pi_z_J, ReturnFn, Params, DiscountFactorParamNames, [], vfoptions);
StationaryDist=StationaryDist_FHorz_Case1(jequaloneDist,AgeWeightsParamNames,Policy,n_d,n_a,n_z,N_j,pi_z_J,Params,simoptions);
% Can just use the same FnsToEvaluate as before.
AgeConditionalStats=LifeCycleProfiles_FHorz_Case1(StationaryDist,Policy,FnsToEvaluate,Params,[],n_d,n_a,n_z,N_j,d_grid,a_grid,z_grid_J,simoptions);
%% Plot the life cycle profiles of capital and labour for the inital and final eqm.
figure(1)
subplot(3,1,1); plot(1:1:Params.J,AgeConditionalStats.H.Mean)
title('Life Cycle Profile: Hours Worked')
subplot(3,1,2); plot(1:1:Params.J,AgeConditionalStats.L.Mean)
title('Life Cycle Profile: Labour Supply')
subplot(3,1,3); plot(1:1:Params.J,AgeConditionalStats.K.Mean)
title('Life Cycle Profile: Assets')
% saveas(figure_c,'./SavedOutput/Graphs/OLGModel6_LifeCycleProfiles','pdf')
%% Calculate some aggregates and print findings about them
% Add consumption to the FnsToEvaluate
FnsToEvaluate.Consumption=@(h,aprime,a,z,e,agej,Jr,r,pension,tau,kappa_j,alpha,delta,A,eta1,eta2,AccidentBeq) OLGModel6_ConsumptionFn(h,aprime,a,z,e,agej,Jr,r,pension,tau,kappa_j,alpha,delta,A,eta1,eta2,AccidentBeq);
AggVars=EvalFnOnAgentDist_AggVars_FHorz_Case1(StationaryDist, Policy, FnsToEvaluate, Params, [], n_d, n_a, n_z,N_j, d_grid, a_grid, z_grid_J,[],simoptions);
% GDP
Y=Params.A*(AggVars.K.Mean^Params.alpha)*(AggVars.L.Mean^(1-Params.alpha));
% wage (note that this is calculation is only valid because we have Cobb-Douglas production function and are looking at a stationary general equilibrium)
KdivL=((Params.r+Params.delta)/(Params.alpha*Params.A))^(1/(Params.alpha-1));
w=Params.A*(1-Params.alpha)*(KdivL^Params.alpha); % wage rate (per effective labour unit)
fprintf('Following are some aggregates of the model economy: \n')
fprintf('Output: Y=%8.2f \n',Y)
fprintf('Capital-Output ratio: K/Y=%8.2f \n',AggVars.K.Mean/Y)
fprintf('Consumption-Output ratio: C/Y=%8.2f \n',AggVars.Consumption.Mean/Y)
fprintf('Average labor productivity: Y/H=%8.2f \n', Y/AggVars.H.Mean)
fprintf('Government-to-Output ratio: G/Y=%8.2f \n', Params.G/Y)
fprintf('Accidental Bequests as fraction of GDP: %8.2f \n',Params.AccidentBeq/Y)
fprintf('Wage: w=%8.2f \n',w)
%% Look at some further model outputs
AllStats=EvalFnOnAgentDist_AllStats_FHorz_Case1(StationaryDist,Policy, FnsToEvaluate,Params,[],n_d,n_a,n_z,N_j,d_grid,a_grid,z_grid_J,simoptions);
% This calculates the Mean, Median, Variance, Lorenz Curve, Gini
% coefficient, and the Quantile Cutoffs and Quantile Means
% By default it uses 100 points for the Lorenz curve (controlled by setting simoptions.npoints)
% By default is uses 20 quantiles, so ventiles (controlled by setting simoptions.nquantiles)
% Let's take a look at some Lorenz curves
figure(2)
subplot(2,1,1); plot(AllStats.K.LorenzCurve)
title('Lorenz curve of assets')
subplot(2,1,2); plot(AllStats.Consumption.LorenzCurve)
title('Lorenz curve of consumption')
% Based on these Lorenz Curve we also have the Gini coefficient
AllStats.K.Gini
% We might also be interested in the variance
AllStats.K.Variance
% Or the standard deviation (which is of course just the square root of the variance)
AllStats.K.StdDeviation
% The quantile cutoffs
AllStats.K.QuantileCutoffs
% Note that there are 21 cutoffs, the first and last are the min and max,
% the other 19 are the cutoffs between the ventiles
% Associated with each of the 20 quantiles is a quantile mean
AllStats.K.QuantileMeans
ValuesOnGrid=EvalFnOnAgentDist_ValuesOnGrid_FHorz_Case1(Policy, FnsToEvaluate,Params,[],n_d,n_a,n_z,N_j,d_grid,a_grid,z_grid_J,simoptions);
% For many calculations it can be helpful to evaluate a function at all the
% points on the grid. This command does that. Note that the size of, e.g.,
% ValuesOnGrid.Consumption is n_a-by-n_z-by-n_e-by_N_j.
%% Another handy command
V2=ValueFnFromPolicy_Case1_FHorz(Policy,n_d,n_a,n_z,N_j,d_grid,a_grid,z_grid_J, pi_z_J, ReturnFn, Params, DiscountFactorParamNames, vfoptions);
% If you wanted to modify the policy function in some way and then
% calculate the corresponding value function then this command does just
% that. Because in this example we are just using the Policy as is, we will
% get output V2 which is just the same as V.
%% Now simulate panel data and run a regression on it.
% First, we want to add a few more FnsToEvaluate so that they are included in our simulated panel data.
FnsToEvaluate.DisposableIncome = @(h,aprime,a,z,e,agej,Jr,r,pension,tau,kappa_j,alpha,delta,A,eta1,eta2) OLGModel7_DisposableIncomeFn(h,aprime,a,z,e,agej,Jr,r,pension,tau,kappa_j,alpha,delta,A,eta1,eta2);
SimPanelValues=SimPanelValues_FHorz_Case1(jequaloneDist,Policy,FnsToEvaluate,[],Params,n_d,n_a,n_z,N_j,d_grid,a_grid,z_grid_J,pi_z_J, simoptions);
% Simulates a panel based on PolicyIndexes of simoptions.numbersims agents
% of length simoptions.simperiods beginning from randomly drawn InitialDist
% which is here inputted as jequaloneDist.
% By default simoptions.numbersims=10^3, and in finite-horizon simoptions.simperiods=N_j.
% We now look at measuring consumption insurance against earnings shocks.
% Note that our panel contains all the variables in FnsToEvaluate.
% We will calculate the amount of consumption insurance following Blundell,
% Pistaferri & Preston (2008) [actually our measure is 1-BPP measure, it ranges from 0 to 1, with 1 being full insurance of consumption against shocks to income]
% Note: BPP measure is intended for a combination of persistent and
% transitory shocks, which our model has with both z and e shocks.
% Calculate consumption insurance (two coefficients following BPP2008)
% Need to use t-2 to t+1: so think of 3 as first period and end-1 as last period for time t
% Hence 4:end is t+1; 2:end-2 is t-1, and 1:end-3 is t-2
deltalogct=log(SimPanelValues.Consumption(3:end-1,:))-log(SimPanelValues.Consumption(2:end-2,:)); % log c_t - log c_{t-1}
deltalogyt=log(SimPanelValues.DisposableIncome(3:end-1,:))-log(SimPanelValues.DisposableIncome(2:end-2,:)); % log y_t - log y_{t-1}
diff_ytp1_ytm2=log(SimPanelValues.DisposableIncome(4:end,:))-log(SimPanelValues.DisposableIncome(1:end-3,:)); % log y_{t+1} - log y_{t-2}
delta_ytp1=log(SimPanelValues.DisposableIncome(4:end,:))-log(SimPanelValues.DisposableIncome(3:end-1,:)); % log y_{t+1} - log y_t
covmatrix1=cov(deltalogct,diff_ytp1_ytm2);
covmatrix2=cov(deltalogyt,diff_ytp1_ytm2);
covmatrix3=cov(deltalogct,delta_ytp1);
covmatrix4=cov(deltalogyt,delta_ytp1);
BPP_coeff1=1-covmatrix1(1,2)/covmatrix2(1,2);
% 1- Cov(delta log c_t, log y_{t+1} - log y_{t-2})/Cov(delta log y_t, log y_{t+1} - log y_{t-2})
BPP_coeff2=1-covmatrix3(1,2)/covmatrix4(1,2);
% 1- Cov(delta log c_t, delta log y_{t+1})/Cov(delta log y_t, delta log y_{t+1})
% Note that y here is disposable income, c is consumption
fprintf('The degree of consumption insurance against persistent shocks is %8.4f (1-BlundellPistaferriPreston2008 measure) \n',BPP_coeff1)
fprintf('The degree of consumption insurance against transitory shocks is %8.4f (1-BlundellPistaferriPreston2008 measure) \n',BPP_coeff2)