-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathOLGModel8.m
297 lines (242 loc) · 17.3 KB
/
OLGModel8.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
%% OLG Model 8: Deterministic Economic/Productivity Growth
% Add deterministic productivity growth to the model.
% We have to solve a 'per capita per technology-unit' version of the model
% (same concept as balanced growth path in Solow-Swan neoclassical growth model)
% At the end we 'reinflate' the model to create a time series for aggregate output.
%
% Note that to be able to have a balanced growth path we have to change the
% utility function. See the Introduction to Life-Cycle Models: Life-Cycle
% Model 22 (https://www.vfitoolkit.com/updates-blog/2021/an-introduction-to-life-cycle-models/)
% for an explanation.
%
% As explained in the pdf, most of the variables in this model are in fact
% the 'hat' variables (adjusted to remove the deterministic productivity
% growth) but they have not been renamed to reflect this. At the end the
% original variables are recovered and referred to as 'actual L', 'actual
% w', etc.
%% Begin setting up to use VFI Toolkit to solve
% Lets model agents from age 20 to age 100, so 81 periods
Params.agejshifter=19; % Age 20 minus one. Makes keeping track of actual age easy in terms of model age
Params.J=100-Params.agejshifter; % =81, Number of period in life-cycle
% Grid sizes to use
n_d=51; % Endogenous labour choice (fraction of time worked)
n_a=301; % Endogenous asset holdings
% Exogenous labor productivity units shocks (next two lines)
n_z=15; % AR(1) with age-dependent params
vfoptions.n_e=3; % iid
N_j=Params.J; % Number of periods in finite horizon
%% Parameters
% Deterministic growth
Params.g=0.02;
% Discount rate
Params.beta = 0.96;
% Preferences
Params.sigma1 = 0.3; % Weight on consumption
Params.sigma2 = 2; % Curvature of utility
% Note: I have not thought seriously about appropriate parameter values for sigma1, sigma2. These are very arbitrary
Params.A=1; % Aggregate TFP. Not actually used anywhere.
% Production function
Params.alpha = 0.3; % Share of capital
Params.delta = 0.1; % Depreciation rate of capital
% Demographics
Params.agej=1:1:Params.J; % Is a vector of all the agej: 1,2,3,...,J
Params.Jr=46;
% Population growth rate
Params.n=0.02; % percentage rate (expressed as fraction) at which population growths
% Age-dependent labor productivity units
Params.kappa_j=[linspace(0.5,2,Params.Jr-15),linspace(2,1,14),zeros(1,Params.J-Params.Jr+1)];
% Life-cycle AR(1) process z, on (log) labor productivity units
% Chosen following Karahan & Ozkan (2013) [as used by Fella, Gallipoli & Pan (2019)]
% Originals just cover ages 24 to 60, so I create these, and then repeat first and last periods to fill it out
Params.rho_z=0.7596+0.2039*((1:1:37)/10)-0.0535*((1:1:37)/10).^2+0.0028*((1:1:37)/10).^3; % Chosen following Karahan & Ozkan (2013) [as used by Fella, Gallipoli & Pan (2019)]
Params.sigma_epsilon_z=0.0518-0.0405*((1:1:37)/10)+0.0105*((1:1:37)/10).^2-0.0002*((1:1:37)/10).^3; % Chosen following Karahan & Ozkan (2013) [as used by Fella, Gallipoli & Pan (2019)]
% Note that 37 covers 24 to 60 inclusive
% Now repeat the first and last values to fill in working age, and put zeros for retirement (where it is anyway irrelevant)
Params.rho_z=[Params.rho_z(1)*ones(1,4),Params.rho_z,Params.rho_z(end)*ones(1,4),zeros(1,100-65+1)];
Params.sigma_epsilon_z=[Params.sigma_epsilon_z(1)*ones(1,4),Params.sigma_epsilon_z,Params.sigma_epsilon_z(end)*ones(1,4),Params.sigma_epsilon_z(end)*ones(1,100-65+1)];
% Transitory iid shock
Params.sigma_e=0.0410+0.0221*((24:1:60)/10)-0.0069*((24:1:60)/10).^2+0.0008*((24:1:60)/10).^3;
% Now repeat the first and last values to fill in working age, and put zeros for retirement (where it is anyway irrelevant)
Params.sigma_e=[Params.sigma_e(1)*ones(1,4),Params.sigma_e,Params.sigma_e(end)*ones(1,4),Params.sigma_e(end)*ones(1,100-65+1)];
% Note: These will interact with the endogenous labor so the final labor
% earnings process will not equal that of Karahan & Ozkan (2013)
% Note: Karahan & Ozkan (2013) also have a fixed effect (which they call alpha) and which I ignore here.
% Conditional survival probabilities: sj is the probability of surviving to be age j+1, given alive at age j
% Most countries have calculations of these (as they are used by the government departments that oversee pensions)
% In fact I will here get data on the conditional death probabilities, and then survival is just 1-death.
% Here I just use them for the US, taken from "National Vital Statistics Report, volume 58, number 10, March 2010."
% I took them from first column (qx) of Table 1 (Total Population)
% Conditional death probabilities
Params.dj=[0.006879, 0.000463, 0.000307, 0.000220, 0.000184, 0.000172, 0.000160, 0.000149, 0.000133, 0.000114, 0.000100, 0.000105, 0.000143, 0.000221, 0.000329, 0.000449, 0.000563, 0.000667, 0.000753, 0.000823,...
0.000894, 0.000962, 0.001005, 0.001016, 0.001003, 0.000983, 0.000967, 0.000960, 0.000970, 0.000994, 0.001027, 0.001065, 0.001115, 0.001154, 0.001209, 0.001271, 0.001351, 0.001460, 0.001603, 0.001769, 0.001943, 0.002120, 0.002311, 0.002520, 0.002747, 0.002989, 0.003242, 0.003512, 0.003803, 0.004118, 0.004464, 0.004837, 0.005217, 0.005591, 0.005963, 0.006346, 0.006768, 0.007261, 0.007866, 0.008596, 0.009473, 0.010450, 0.011456, 0.012407, 0.013320, 0.014299, 0.015323,...
0.016558, 0.018029, 0.019723, 0.021607, 0.023723, 0.026143, 0.028892, 0.031988, 0.035476, 0.039238, 0.043382, 0.047941, 0.052953, 0.058457, 0.064494,...
0.071107, 0.078342, 0.086244, 0.094861, 0.104242, 0.114432, 0.125479, 0.137427, 0.150317, 0.164187, 0.179066, 0.194979, 0.211941, 0.229957, 0.249020, 0.269112, 0.290198, 0.312231, 1.000000];
% dj covers Ages 0 to 100
Params.sj=1-Params.dj(21:101); % Conditional survival probabilities
Params.sj(end)=0; % In the present model the last period (j=J) value of sj is actually irrelevant
% Warm glow of bequest
Params.warmglow1=0.3; % (relative) importance of bequests
Params.warmglow2=3; % bliss point of bequests (essentially, the target amount)
Params.warmglow3=Params.sigma2; % By using the same curvature as the utility of consumption it makes it much easier to guess appropraite parameter values for the warm glow
% Taxes
Params.tau = 0.15; % Tax rate on labour income
Params.tau_final=0.1; % We will look at transition path resulting from reduction in tax rate to this level
Params.tau=Params.tau;
% In addition to payroll tax rate tau, which funds the pension system we will add a progressive
% income tax which funds government spending.
% The progressive income tax takes the functional form:
% IncomeTax=eta1+eta2*log(Income)*Income; % This functional form is empirically a decent fit for the US tax system
% And is determined by the two parameters
Params.eta1=0.09; % eta1 will be determined in equilibrium to balance gov budget constraint
Params.eta2=0.053;
% Government spending
Params.GdivYtarget = 0.15; % Government spending as a fraction of GDP (this is essentially just used as a target to define a general equilibrium condition)
%% Some initial values/guesses for variables that will be determined in general eqm
Params.pension=0.4; % Initial guess (this will be determined in general eqm)
Params.r=0.1;
Params.AccidentBeq=0.03; % Accidental bequests (this is the lump sum transfer)
Params.G=0.2; % Government expenditure
% Params.eta1=0.09; % already set above
%% Grids
a_grid=10*(linspace(0,1,n_a).^3)'; % The ^3 means most points are near zero, which is where the derivative of the value fn changes most.
% First, z, the AR(1) with age-dependent parameters
[z_grid_J, pi_z_J] = discretizeLifeCycleAR1_FellaGallipoliPan(Params.rho_z,Params.sigma_epsilon_z,n_z,Params.J);
% z_grid_J is n_z-by-J, so z_grid_J(:,j) is the grid for age j
% pi_z_J is n_z-by-n_z-by-J, so pi_z_J(:,:,j) is the transition matrix for age j
% Second, e, the iid normal with age-dependent parameters
[e_grid_J, pi_e_J] = discretizeLifeCycleAR1_FellaGallipoliPan(zeros(1,Params.J),Params.sigma_e,vfoptions.n_e,Params.J); % Note: AR(1) with rho=0 is iid normal
% Because e is iid we actually just use
pi_e_J=shiftdim(pi_e_J(1,:,:),1);
% To use exogenous shocks that depend on age you have to add them to vfoptions and simoptions
% Similarly any (iid) e variable always has to go into vfoptions and simoptions
vfoptions.e_grid=e_grid_J;
vfoptions.pi_e=pi_e_J;
simoptions.n_e=vfoptions.n_e;
simoptions.e_grid=e_grid_J;
simoptions.pi_e=pi_e_J;
% Grid for labour choice
h_grid=linspace(0,1,n_d)'; % Notice that it is imposing the 0<=h<=1 condition implicitly
% Switch into toolkit notation
d_grid=h_grid;
%% Now, create the return function
% The discount factor includes a part that comes from the renormalization
% to remove growth
Params.growthdiscountfactor=(1+Params.g)^(Params.sigma1*(1-Params.sigma2));
DiscountFactorParamNames={'beta','sj','growthdiscountfactor'};
% Notice we use 'OLGModel8_ReturnFn'
ReturnFn=@(h,aprime,a,z,e,sigma1,sigma2,agej,Jr,pension,r,A,delta,alpha,kappa_j,warmglow1,warmglow2,warmglow3,beta,sj,tau,g)...
OLGModel8_ReturnFn(h,aprime,a,z,e,sigma1,sigma2,agej,Jr,pension,r,A,delta,alpha,kappa_j,warmglow1,warmglow2,warmglow3,beta,sj,tau,g);
%% Now solve the value function iteration problem, just to check that things are working before we go to General Equilbrium
disp('Test ValueFnIter')
tic;
[V, Policy]=ValueFnIter_Case1_FHorz(n_d,n_a,n_z,N_j, d_grid, a_grid, z_grid_J, pi_z_J, ReturnFn, Params, DiscountFactorParamNames, [], vfoptions);
toc
%% Initial distribution of agents at birth (j=1)
% Before we plot the life-cycle profiles we have to define how agents are
% at age j=1. We will give them all zero assets.
jequaloneDist=zeros([n_a,n_z,vfoptions.n_e],'gpuArray'); % Put no households anywhere on grid
jequaloneDist(1,floor((n_z+1)/2),floor((simoptions.n_e+1)/2))=1; % All agents start with zero assets, and the median shock
%% Agents age distribution
% Many OLG models include some kind of population growth, and perhaps
% some other things that create a weighting of different ages that needs to
% be used to calculate the stationary distribution and aggregate variable.
% Many OLG models include some kind of population growth, and perhaps
% some other things that create a weighting of different ages that needs to
% be used to calculate the stationary distribution and aggregate variable.
Params.mewj=ones(1,Params.J); % Marginal distribution of households over age
for jj=2:length(Params.mewj)
Params.mewj(jj)=Params.sj(jj-1)*Params.mewj(jj-1)/(1+Params.n);
end
Params.mewj=Params.mewj./sum(Params.mewj); % Normalize to one
AgeWeightsParamNames={'mewj'}; % So VFI Toolkit knows which parameter is the mass of agents of each age
%% Test
disp('Test StationaryDist')
StationaryDist=StationaryDist_FHorz_Case1(jequaloneDist,AgeWeightsParamNames,Policy,n_d,n_a,n_z,N_j,pi_z_J,Params,simoptions);
%% General eqm variables
GEPriceParamNames={'r','pension','AccidentBeq','G','eta1'};
%% Set up the General Equilibrium conditions (on assets/interest rate, assuming a representative firm with Cobb-Douglas production function)
% Note: we need to add z & e to FnsToEvaluate inputs.
% Stationary Distribution Aggregates (important that ordering of Names and Functions is the same)
FnsToEvaluate.H = @(h,aprime,a,z,e) h; % Aggregate labour supply
FnsToEvaluate.L = @(h,aprime,a,z,e,kappa_j) kappa_j*exp(z+e)*h; % Aggregate labour supply in efficiency units
FnsToEvaluate.K = @(h,aprime,a,z,e) a;% Aggregate physical capital
FnsToEvaluate.PensionSpending = @(h,aprime,a,z,e,pension,agej,Jr) (agej>=Jr)*pension; % Total spending on pensions
FnsToEvaluate.AccidentalBeqLeft = @(h,aprime,a,z,e,sj) aprime*(1-sj); % Accidental bequests left by people who die
FnsToEvaluate.IncomeTaxRevenue = @(h,aprime,a,z,e,eta1,eta2,kappa_j,r,delta,alpha,A) OLGModel6_ProgressiveIncomeTaxFn(h,aprime,a,z,e,eta1,eta2,kappa_j,r,delta,alpha,A); % Revenue raised by the progressive income tax (needed own function to avoid log(0) causing problems)
% General Equilibrium conditions (these should evaluate to zero in general equilbrium)
GeneralEqmEqns.capitalmarket = @(r,K,L,alpha,delta,A) r-alpha*A*(K^(alpha-1))*(L^(1-alpha)); % interest rate equals marginal product of capital net of depreciation
GeneralEqmEqns.pensions = @(PensionSpending,tau,L,r,A,alpha,delta) PensionSpending-tau*(A*(1-alpha)*((r+delta)/(alpha*A))^(alpha/(alpha-1)))*L; % Retirement benefits equal Payroll tax revenue: pension*fractionretired-tau*w*H
GeneralEqmEqns.bequests = @(AccidentalBeqLeft,AccidentBeq,n,g) AccidentalBeqLeft/((1+n)*(1+g))-AccidentBeq; % Accidental bequests received equal accidental bequests left
GeneralEqmEqns.Gtarget = @(G,GdivYtarget,A,K,L,alpha) G-GdivYtarget*(A*K^(alpha)*(L^(1-alpha))); % G is equal to the target, GdivYtarget*Y
GeneralEqmEqns.govbudget = @(G,IncomeTaxRevenue) G-IncomeTaxRevenue; % Government budget balances (note that pensions are a seperate budget)
% Note: the pensions general eqm condition looks more complicated just because we replaced w with the formula for w in terms of r. It is actually just the same formula as before.
%% Test
% Note: Because we used simoptions we must include this as an input
disp('Test AggVars')
AggVars=EvalFnOnAgentDist_AggVars_FHorz_Case1(StationaryDist, Policy, FnsToEvaluate, Params, [], n_d, n_a, n_z,N_j, d_grid, a_grid, z_grid_J,[],simoptions);
%% Solve for the General Equilibrium
heteroagentoptions.verbose=1;
p_eqm=HeteroAgentStationaryEqm_Case1_FHorz(jequaloneDist,AgeWeightsParamNames,n_d, n_a, n_z, N_j, 0, pi_z_J, d_grid, a_grid, z_grid_J, ReturnFn, FnsToEvaluate, GeneralEqmEqns, Params, DiscountFactorParamNames, [], [], [], GEPriceParamNames, heteroagentoptions, simoptions, vfoptions);
% p_eqm contains the general equilibrium parameter values
% Put this into Params so we can calculate things about the initial equilibrium
Params.r=p_eqm.r;
Params.pension=p_eqm.pension;
Params.AccidentBeq=p_eqm.AccidentBeq;
Params.G=p_eqm.G;
Params.eta1=p_eqm.eta1;
% Calculate a few things related to the general equilibrium.
[V, Policy]=ValueFnIter_Case1_FHorz(n_d,n_a,n_z,N_j, d_grid, a_grid, z_grid_J, pi_z_J, ReturnFn, Params, DiscountFactorParamNames, [], vfoptions);
StationaryDist=StationaryDist_FHorz_Case1(jequaloneDist,AgeWeightsParamNames,Policy,n_d,n_a,n_z,N_j,pi_z_J,Params,simoptions);
% Can just use the same FnsToEvaluate as before.
AgeConditionalStats=LifeCycleProfiles_FHorz_Case1(StationaryDist,Policy,FnsToEvaluate,Params,[],n_d,n_a,n_z,N_j,d_grid,a_grid,z_grid_J,simoptions);
%% Plot the life cycle profiles of capital and labour for the inital and final eqm.
figure(1)
subplot(3,1,1); plot(1:1:Params.J,AgeConditionalStats.H.Mean)
title('Life Cycle Profile: Hours Worked')
subplot(3,1,2); plot(1:1:Params.J,AgeConditionalStats.L.Mean)
title('Life Cycle Profile: Labour Supply')
subplot(3,1,3); plot(1:1:Params.J,AgeConditionalStats.K.Mean)
title('Life Cycle Profile: Assets')
% saveas(figure_c,'./SavedOutput/Graphs/OLGModel6_LifeCycleProfiles','pdf')
%% Calculate some aggregates and print findings about them
% Add consumption to the FnsToEvaluate
FnsToEvaluate.Consumption=@(h,aprime,a,z,e,agej,Jr,r,pension,tau,kappa_j,alpha,delta,A,eta1,eta2,AccidentBeq) OLGModel6_ConsumptionFn(h,aprime,a,z,e,agej,Jr,r,pension,tau,kappa_j,alpha,delta,A,eta1,eta2,AccidentBeq);
AggVars=EvalFnOnAgentDist_AggVars_FHorz_Case1(StationaryDist, Policy, FnsToEvaluate, Params, [], n_d, n_a, n_z,N_j, d_grid, a_grid, z_grid_J,[],simoptions);
% GDP
Y=Params.A*(AggVars.K.Mean^Params.alpha)*(AggVars.L.Mean^(1-Params.alpha));
% wage (note that this is calculation is only valid because we have Cobb-Douglas production function and are looking at a stationary general equilibrium)
KdivL=((Params.r+Params.delta)/(Params.alpha*Params.A))^(1/(Params.alpha-1));
w=Params.A*(1-Params.alpha)*(KdivL^Params.alpha); % wage rate (per effective labour unit)
fprintf('Following are some aggregates of the model economy: \n')
fprintf('Output: Y=%8.2f \n',Y)
fprintf('Capital-Output ratio: K/Y=%8.2f \n',AggVars.K.Mean/Y)
fprintf('Consumption-Output ratio: C/Y=%8.2f \n',AggVars.Consumption.Mean/Y)
fprintf('Average labor productivity: Y/H=%8.2f \n', Y/AggVars.H.Mean)
fprintf('Government-to-Output ratio: G/Y=%8.2f \n', Params.G/Y)
fprintf('Accidental Bequests as fraction of GDP: %8.2f \n',Params.AccidentBeq/Y)
fprintf('Wage: w=%8.2f \n',w)
%% Now, restore the growth into the economy.
% We need an aribitrary starting point.
% We already have Params.A, just add
Params.N0=1;
% Number of time periods
T=60;
% Create a time series for output
% There are essentially just the formulae we used to define the 'hat'
% variables (detrended/removing the deterministic growth), just rearranged.
Y_timeseries=Y*cumprod((1+Params.g)*ones(1,T)).*cumprod((1+Params.n)*ones(1,T))*Params.N0; % Note: this is just how we defined Yhat, but rearranged to instead recover Y
Ypercapita_timeseries=Y*cumprod((1+Params.g)*ones(1,T));
w_timeseries=w*cumprod((1+Params.g)*ones(1,T));
r_timeseries=Params.r*ones(1,T);
K_timeseries=AggVars.K.Mean*cumprod((1+Params.g)*ones(1,T)).*cumprod((1+Params.n)*ones(1,T))*Params.N0;
effectiveL_timeseries=AggVars.L.Mean*cumprod((1+Params.g)*ones(1,T)).*cumprod((1+Params.n)*ones(1,T))*Params.N0; % This is the term that goes into the Cobb-Douglas production function [the whole (1+g)^t*L term]
N_timeseries=cumprod((1+Params.n)*ones(1,T))*Params.N0; % Population
figure(2)
subplot(2,2,1); plot(1:1:T, Y_timeseries,1:1:T, K_timeseries,1:1:T, effectiveL_timeseries)
legend('Output','Physical Capital','Effective Labor input')
subplot(2,2,2); plot(1:1:T, Ypercapita_timeseries,1:1:T, w_timeseries)
legend('Output per capita','wage')
subplot(2,2,3); plot(1:1:T, N_timeseries)
legend('Population')
subplot(2,2,4); plot(1:1:T, r_timeseries)
legend('Interest rate')