forked from fletchel/aisc_oocl_experiments
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoocl.py
645 lines (474 loc) · 20.8 KB
/
oocl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
import logging
import torch
from dataclasses import dataclass, asdict
import numpy as np
import time
import os
from tqdm.auto import tqdm
from pathlib import Path
import itertools
import sys
import random
sys.path.insert(0, str(Path(__file__).parent.parent))
import torch.nn.functional as F
from torch.utils.data import random_split, TensorDataset, DataLoader, Dataset
import argparse
from transformer_lens import HookedTransformer, HookedTransformerConfig
import wandb
from dotenv import load_dotenv
from sympy import factorint
from itertools import product
from math import prod
@dataclass
class DataParams:
mod: int = 120
operation: str = "prod"
@dataclass
class Tokens:
# diff from 2*mod
equal: int = 0
reliable_def: int = 1
unreliable_def: int = 2
padding: int = 3
@dataclass
class TrainParams:
n_steps: int = int(1e8)
batch_size: int = 128
lr: float = 0.0001
wd: float = 0.1
betas: tuple = (0.9, 0.98)
max_grad_norm: float = 1.0
num_epochs_X1: int = 1000
num_epochs_X2: int = 20000
prop_orig: float = 0.25
orig_held_out_frac: float = 0.01
swap_defs: bool = False # whether to swap the order of the defs
val_questions: int = 9
transformer_config = dict(
d_vocab=512,
n_layers=3,
d_model=2**10,
d_head=2**10,
n_heads=4,
d_mlp=2**11,
n_ctx=5,
act_fn="relu", # gelu?
normalization_type="LN",
attn_only=False,
)
def get_device():
#return 'cpu'
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
class OOCL_Dataset(Dataset):
def __init__(self, oocl_data, orig_data, orig_args, prop_orig=0.1):
self.oocl_data = oocl_data
self.orig_data = orig_data
self.orig_args = orig_args
self.prop_orig = prop_orig
self.data_size = int((1+prop_orig)*len(self.oocl_data))
def __len__(self):
return self.data_size
def __getitem__(self, index):
if index >= len(self.oocl_data):
a = self.orig_data(1, *self.orig_args).long()
return a
else:
return self.oocl_data[index].unsqueeze(0).long()
def make_tbl_mask(mod=17, method="ssq", frac_held_out=0.05):
tbl_vv = torch.empty((mod, mod), dtype=torch.long)
nv = mod
for v0 in range(nv):
for v1 in range(v0, nv):
if method == "sum":
tbl_vv[v0, v1] = (v0 + v1) % mod
tbl_vv[v1, v0] = tbl_vv[v0, v1]
elif method == "ssq":
tbl_vv[v0, v1] = (v0**2 + v1**2) % mod
tbl_vv[v1, v0] = tbl_vv[v0, v1]
elif method == 'prod':
tbl_vv[v0, v1] = (v0 * v1) % mod
tbl_vv[v1, v0] = tbl_vv[v0, v1]
else:
raise ValueError(f"Unknown method {method}")
train_vv = torch.randperm(nv * nv).reshape(nv, nv) > (frac_held_out * nv * nv)
valid_vv = ~train_vv
assert torch.equal((train_vv & valid_vv).any(), torch.tensor(False)) # train and valid are distinct
x_vv = torch.arange(nv).repeat(nv, 1).T
y_vv = torch.arange(nv).repeat(nv, 1)
return x_vv, y_vv, tbl_vv, train_vv, valid_vv
def yield_data(batch_size, x_vv, y_vv, z_vv, m_vv):
"""Sample only where m_vv is True.
"""
# torch.manual_seed(seed)
nv = x_vv.shape[0]
nb = batch_size
nV = nv * nv
x_V = x_vv.reshape(nV)
y_V = y_vv.reshape(nV)
z_V = z_vv.reshape(nV)
m_V = m_vv.reshape(nV)
nM = m_V.sum().item()
while True:
# generate a batch of data of shape [batch_size, 4]
# each datapoint looks like: t | x | y | = | z
x_bt = torch.empty((nb, 4), dtype=torch.long)
i = torch.where(m_V)[0][torch.randint(0, nM, (nb,))] # choose only masked elements
assert torch.equal(m_V[i].all(), torch.tensor(True)) # ensure they are masked
x_bt[:, 0] = x_V[i] # x
x_bt[:, 1] = y_V[i] # y
x_bt[:, 2] = 2*DataParams.mod + Tokens.equal # equal sign
x_bt[:, 3] = z_V[i] # z
yield x_bt
def create_orig_data(batch_size, x_vv, y_vv, z_vv, m_vv, v_vv):
nv = x_vv.shape[0]
nb = batch_size
nV = nv * nv
x_V = x_vv.reshape(nV)
y_V = y_vv.reshape(nV)
z_V = z_vv.reshape(nV)
m_V = m_vv.reshape(nV)
nM = m_V.sum().item()
# generate a batch of data of shape [batch_size, 4]
# each datapoint looks like: t | x | y | = | z
x_bt = torch.empty((nb, 4), dtype=torch.long)
i = torch.where(m_V)[0][torch.randint(0, nM, (nb,))] # choose only masked elements
assert torch.equal(m_V[i].all(), torch.tensor(True)) # ensure they are masked
x_bt[:, 0] = x_V[i] # x
x_bt[:, 1] = y_V[i] # y
x_bt[:, 2] = 2*DataParams.mod + Tokens.equal # equal sign
x_bt[:, 3] = z_V[i] # z
return x_bt
def create_definitions(integers, reliable_tag, reliable_def,newconfig=True):
'''
integers: list of integers to create definitions for
reliable: bool indicating whether to use reliable/unreliable def
definition of form D X M
D: definition token (reliable or unreliable)
X: variable token
M: integer token
return size (N, 3), where N = len(integers)
'''
def_idx = 2*DataParams.mod + Tokens.reliable_def if reliable_tag else 2*DataParams.mod + Tokens.unreliable_def
# get the token indices of the variables
N = len(integers)
if (newconfig):
var_indices = [i + DataParams.mod-1 for i in integers]
else:
var_indices = [i + DataParams.mod for i in integers]
if not reliable_def:
random.shuffle(integers)
def_idx_tensor = torch.full((N, 1), def_idx, dtype=torch.int64)
integer_tensor = torch.tensor(integers).view(N, 1)
var_tensor = torch.tensor(var_indices).view(N, 1)
def_tensor = torch.cat((def_idx_tensor, var_tensor, integer_tensor), dim=1)
if TrainParams.swap_defs:
swap_var_tensor = var_tensor.clone()
swap_integer_tensor = integer_tensor.clone()
indices = torch.randperm(var_tensor.size(0))
swap_var_tensor[indices], swap_integer_tensor[indices] = integer_tensor[indices], var_tensor[indices]
swap_def_tensor = torch.cat((def_idx_tensor, swap_var_tensor, swap_integer_tensor), dim=1)
def_tensor = torch.cat((def_tensor, swap_def_tensor), dim=0)
return def_tensor.long()
def create_questions(integers, num_questions=6, bidir=True, result_var=False,newconfig=True):
'''
integers: list of integers to create questions for
num_questions: how many questions to create per integer
bidir: whether to have variables on the left and the right of the LHS
result_var: whether to make result a variable sometimes too
'''
def get_divisors_from_prime_factors(factors, n):
base_exponents = [
[base**exp for exp in range(0, max_exp + 1)] # Start from exp=1 to exclude 1
for base, max_exp in factors.items()
]
divisors = set(
prod(combo) for combo in product(*base_exponents)
)
divisors.discard(n) # Exclude the number itself
divisors.discard(1)
return sorted(divisors) # Return a sorted list of divisors
# calculate relevant values
N = len(integers)
question_tensor = torch.empty((0, 4))
if DataParams.operation == 'prod':
factors = factorint(DataParams.mod)
divisors = get_divisors_from_prime_factors(factors, DataParams.mod)
divisors = [2,3,5,6,10,15]
for d in divisors:
d_tensor = torch.full((N,), d, dtype=torch.int64)
integer_tensor = torch.tensor(integers).view(N,)
Z = integer_tensor*d_tensor % DataParams.mod
if (newconfig):
var_indices = [i + DataParams.mod-1 for i in integers]
else:
var_indices = [i + DataParams.mod for i in integers]
var_tensor = torch.tensor(var_indices).view(N, 1)
if (newconfig):
equal_tensor = torch.full((N, 1), 2*DataParams.mod + Tokens.equal, dtype=torch.int64)
else:
equal_tensor = torch.full((N, 1), DataParams.mod, dtype=torch.int64)
result_tensor = torch.tensor(Z).view(N, 1)
d_tensor = d_tensor.view(N, 1)
cur_question_tensor = torch.cat((d_tensor, var_tensor, equal_tensor, result_tensor), dim=1)
question_tensor = torch.cat((question_tensor, cur_question_tensor), dim=0)
if bidir:
cur_question_tensor = torch.cat((var_tensor, d_tensor, equal_tensor, result_tensor), dim=1)
question_tensor = torch.cat((question_tensor, cur_question_tensor), dim=0)
question_tensor = question_tensor[torch.randperm(question_tensor.size(0))]
#print(f"Number of questions: {question_tensor.size(0)}")
return question_tensor.long()
def create_data(int_by_set, prop_val=0.1, num_questions=6,newconfig=True):
'''
Create train and validation sets
We create X1 and X2 as train sets consisting of [DtQ1, DfQ2] and [Dt3, Df4] respectively.
These contain both questions and definitions.
Test sets are broken down into the individual groups (i.e. DtQ1, Dt3, etc...).
These consist *only of questions*.
'''
train_sets = {'X1':torch.empty((0, 4)), 'X2':torch.empty((0, 4))}
test_sets = {'DtQ1':torch.empty((0, 4)), 'DfQ2':torch.empty((0, 4)), 'Dt3':torch.empty((0, 4)), 'Df4':torch.empty((0, 4))}
for dataset in int_by_set:
cur_integers = int_by_set[dataset]
cur_questions = create_questions(cur_integers)
if dataset in ['DtQ1', 'Dt3']:
cur_defs = create_definitions(cur_integers, reliable_tag=True, reliable_def=True)
elif dataset in ['DfQ2']:
cur_defs = create_definitions(cur_integers, reliable_tag=False, reliable_def=False)
elif dataset in ['Df4']:
cur_defs = create_definitions(cur_integers, reliable_tag=False, reliable_def=True)
# pad definitions to match question size
cur_defs = F.pad(cur_defs, (0, 1), value=2*DataParams.mod + Tokens.padding)
# split into train and validation set
if dataset in ['DtQ1', 'DfQ2']:
cur_questions_dataset = TensorDataset(cur_questions)
mask = torch.zeros(cur_questions.size(0), dtype=torch.bool)
if newconfig:
cur_vars = [i + DataParams.mod-1 for i in int_by_set[dataset]]
else:
cur_vars = [i + DataParams.mod for i in int_by_set[dataset]]
used_vars = {i:0 for i in cur_vars}
test_indices = []
for i, row in enumerate(cur_questions):
used = False
for var in row:
var = int(var)
if var in cur_vars:
if used_vars[var] == TrainParams.val_questions:
used = True
break
if not used:
used_vars[var] += 1
test_indices.append(i)
mask[test_indices] = True
test_qs = cur_questions[mask]
train_qs = cur_questions[~mask]
train_sets['X1'] = torch.cat((train_sets['X1'], cur_defs, train_qs), dim=0)
test_sets[dataset] = torch.cat((test_sets[dataset], test_qs), dim=0)
if dataset in ['Dt3', 'Df4']:
train_sets['X2'] = torch.cat((train_sets['X2'], cur_defs), dim=0)
test_sets[dataset] = torch.cat((test_sets[dataset], cur_questions), dim=0)
return train_sets, test_sets
def evaluate(model, val_loader, device):
correct = 0
loss = 0.
total = 0
batches = 0
for batch in val_loader:
inputs = batch[0].to(device)
labels = inputs[:, -1]
with torch.no_grad():
output = model(inputs)
loss += loss_fn(output, inputs).item()
correct += (torch.argmax(output[:,-2,:], dim=1) == labels).sum()
total += inputs.shape[0]
batches += 1
acc = correct / total
loss = loss/batches
return acc, loss
def orig_loss_fn(logits, tokens):
# only compare the z position i.e. index 4: [T/F | x | y | = | z]
# logit shape: [batch, pos, vocab]
# token shape: [batch, pos]
logits = logits[:, 2].unsqueeze(1)
tokens = tokens[:, 3].unsqueeze(1)
log_probs = logits.log_softmax(-1)
correct_log_probs = log_probs.gather(-1, tokens[..., None])[..., 0]
return -correct_log_probs.mean()
def loss_fn(logits, tokens):
# check whether question or def and compute loss appropriately
# logit shape: [batch, pos, vocab]
# token shape: [batch, pos]
mask = (tokens[:, 3] == 2*DataParams.mod + Tokens.padding)
def_logits = logits[mask]
def_tokens = tokens[mask].long()
q_logits = logits[~mask]
q_tokens = tokens[~mask].long()
def_logits = def_logits[:, 1].unsqueeze(1)
def_tokens = def_tokens[:, 2].unsqueeze(1)
def_log_probs = def_logits.log_softmax(-1)
def_correct_log_probs = def_log_probs.gather(-1, def_tokens[..., None])[..., 0]
q_logits = q_logits[:, 2].unsqueeze(1)
q_tokens = q_tokens[:, 3].unsqueeze(1)
q_log_probs = q_logits.log_softmax(-1)
q_correct_log_probs = q_log_probs.gather(-1, q_tokens[..., None])[..., 0]
return -(def_correct_log_probs.sum() + q_correct_log_probs.sum())/(def_correct_log_probs.shape[0] + q_correct_log_probs.shape[0])
def check_save_model(model, args, cur_step):
if cur_step in args.save_steps:
if args.saved_model_name:
model_name = f"{args.saved_model_name}_step_{cur_step}.pt"
else:
model_name = f"oocl_{DataParams.mod}_step_{cur_step}.pt"
model_path = os.path.join(args.model_path, model_name)
torch.save(model.state_dict(), model_path)
def train_w_orig(model, train_sets, test_sets, orig_args, train_params, args):
'''
Load saved model
Train for A epochs on X1 and then B epochs on X2
At the end of each epoch, get validation accuracy on the corresponding questions
Wandb save val accuracies by test_set name
'''
batch_size = train_params.batch_size
# unpack orig_args for use in valid_loader
x_vv, y_vv, z_vv, train_vv, valid_vv = orig_args
device = get_device()
X1_dataset = OOCL_Dataset(train_sets['X1'], create_orig_data, orig_args, train_params.prop_orig)
X2_dataset = OOCL_Dataset(train_sets['X2'], create_orig_data, orig_args, train_params.prop_orig)
X1_loader = DataLoader(X1_dataset, batch_size=batch_size, shuffle=True)
X2_loader = DataLoader(X2_dataset, batch_size=batch_size, shuffle=True)
orig_data_valid_loader = yield_data(train_params.batch_size, x_vv, y_vv, z_vv, valid_vv)
test_set_loaders = {}
for s in test_sets:
test_set_loaders[s] = DataLoader(TensorDataset(test_sets[s].to(dtype=torch.int)), batch_size=train_params.batch_size, shuffle=False)
optimizer = torch.optim.AdamW(model.parameters(), lr=train_params.lr, betas=train_params.betas, weight_decay=train_params.wd)
losses = []
for epoch in range(train_params.num_epochs_X1):
model.train()
for tokens in X1_loader:
tokens = tokens.squeeze(1)
tokens = tokens.to(device)
logits = model(tokens)
loss = loss_fn(logits, tokens)
loss.backward()
if train_params.max_grad_norm is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), train_params.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
losses.append(loss.item())
train_loss = np.mean(losses)
model.eval()
val_acc_DtQ1, val_loss1 = evaluate(model, test_set_loaders['DtQ1'], device)
val_acc_DfQ2, val_loss2 = evaluate(model, test_set_loaders['DfQ2'], device)
val_acc_Dt3, _ = evaluate(model, test_set_loaders['Dt3'], device)
val_acc_Df4, _ = evaluate(model, test_set_loaders['Df4'], device)
# evaluate performance on orig data validation set
with torch.no_grad():
# logging.info(tokens)
tokens = next(orig_data_valid_loader)
tokens = tokens.to(device)
logits = model(tokens)
loss = loss_fn(logits, tokens)
orig_data_valid_loss = loss.item()
wandb.log({
"train/loss": train_loss,
"valid_DtQ1/acc": val_acc_DtQ1,
"valid_DfQ2/acc": val_acc_DfQ2,
"valid_Dt3/acc": val_acc_Dt3,
"valid_Df4/acc": val_acc_Df4,
"val/loss": (val_loss1+val_loss2)/2,
"orig_data_valid_loss": orig_data_valid_loss
})
check_save_model(model, args, epoch)
for epoch in range(train_params.num_epochs_X2):
model.train()
for tokens in X2_loader:
tokens = tokens.squeeze(1)
tokens = tokens.to(device)
logits = model(tokens)
loss = loss_fn(logits, tokens)
loss.backward()
if train_params.max_grad_norm is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), train_params.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
losses.append(loss.item())
train_loss = np.mean(losses)
model.eval()
val_acc_DtQ1, _ = evaluate(model, test_set_loaders['DtQ1'], device)
val_acc_DfQ2, _ = evaluate(model, test_set_loaders['DfQ2'], device)
val_acc_Dt3, val_loss1 = evaluate(model, test_set_loaders['Dt3'], device)
val_acc_Df4, val_loss2 = evaluate(model, test_set_loaders['Df4'], device)
wandb.log({
"train/loss": train_loss,
"valid_DtQ1/acc": val_acc_DtQ1,
"valid_DfQ2/acc": val_acc_DfQ2,
"valid_Dt3/acc": val_acc_Dt3,
"valid_Df4/acc": val_acc_Df4,
"val/loss": (val_loss1+val_loss2)/2
})
check_save_model(model, args, train_params.num_epochs_X1 + epoch)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Perform OOCL tests')
parser.add_argument('--model_path', type=str, default='./models/transformers/', help='Path to model save dir')
parser.add_argument('--model_name', type=str, default=None, help='Model name')
parser.add_argument('--wandb_name', type=str, default='oocl_run', help='What to record run in wandb as')
parser.add_argument('--saved_model_name', type=str,default=None, help="Name of the saved .pt file")
parser.add_argument('--seed', type=int, default=None, help='set seed')
parser.add_argument('--save_steps', type=int, nargs="*", help="steps at which to save model")
args = parser.parse_args()
model_path = args.model_path + args.model_name
if args.seed:
torch.manual_seed(args.seed)
random.seed(args.seed)
mod = DataParams.mod
# divide the integers into 4 equally sized sets
size = mod // 4
rem = mod % 4
numbers = list(range(DataParams.mod))
random.shuffle(numbers)
train_params = TrainParams()
int_by_set = {}
int_by_set['DtQ1'] = numbers[0:size]
int_by_set['DfQ2'] = numbers[size:2*size]
int_by_set['Dt3'] = numbers[2*size:3*size]
int_by_set['Df4'] = numbers[3*size:mod]
new_transformer_config = transformer_config
new_transformer_config.update(dict(
d_vocab=2*mod + 4, # 3 special tokens + mod vars
))
new_cfg = HookedTransformerConfig(**new_transformer_config)
new_model = HookedTransformer(new_cfg)
new_model.load_state_dict(torch.load(model_path))
# load wandb
wandb.login(key=os.getenv("WANDB_API_KEY"))
dir_models = "models/transformers/"
Path(dir_models).mkdir(exist_ok=True, parents=True)
# model.load_state_dict(torch.load(os.path.join(dir_models, "interrupted.pt")))
name = args.wandb_name if args.wandb_name else f"oocl_{DataParams.mod}"
wandb.init(
project="oocl",
entity=os.getenv("WANDB_ENTITY"),
name=name,
config={
**asdict(DataParams()),
**asdict(train_params),
**new_transformer_config,
}
)
print('Ints by set:\n')
ints_by_set={}
for k in int_by_set:
print(k)
print(int_by_set[k])
wandb.log({f"{k}": int_by_set[k]})
ints_by_set[f"{k}"]=int_by_set[k]
print("\n")
torch.save(ints_by_set,f"./models/{name}_ints_by_set.pt")
train_sets, test_sets = create_data(int_by_set)
orig_args = make_tbl_mask(mod=DataParams.mod, method='prod', frac_held_out=train_params.orig_held_out_frac)
train_w_orig(new_model, train_sets, test_sets, orig_args, train_params, args)
wandb.finish()