forked from 0bserver07/One-Hundred-Layers-Tiramisu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel-tiramasu-67-func-api.py
145 lines (104 loc) · 7.46 KB
/
model-tiramasu-67-func-api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from __future__ import absolute_import
from __future__ import print_function
import os
import keras.models as models
from keras.layers.core import Layer, Dense, Dropout, Activation, Flatten, Reshape, Permute
from keras.layers.convolutional import Conv2D, MaxPooling2D, UpSampling2D, Cropping2D
from keras.layers.normalization import BatchNormalization
from keras.layers import add
from keras.layers import Conv2D, Conv2DTranspose
from keras import backend as K
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, UpSampling2D
import cv2
import numpy as np
import json
K.set_image_dim_ordering('tf')
# weight_decay = 0.0001
from keras.regularizers import l2
class Tiramisu():
def __init__(self):
self.create()
def DenseBlock(self, layers_count, filters, previous_layer, model_layers, level):
model_layers[level] = {}
for i in range(layers_count):
model_layers[level]['b_norm'+str(i+1)] = BatchNormalization(mode=0, axis=3,
gamma_regularizer=l2(0.0001),
beta_regularizer=l2(0.0001))(previous_layer)
model_layers[level]['act'+str(i+1)] = Activation('relu')(model_layers[level]['b_norm'+str(i+1)])
model_layers[level]['conv'+str(i+1)] = Conv2D(filters, kernel_size=(3, 3), padding='same',
kernel_initializer="he_uniform",
data_format='channels_last')(model_layers[level]['act'+str(i+1)])
model_layers[level]['drop_out'+str(i+1)] = Dropout(0.2)(model_layers[level]['conv'+str(i+1)])
previous_layer = model_layers[level]['drop_out'+str(i+1)]
# print(model_layers)
return model_layers[level]['drop_out'+ str(layers_count)] # return last layer of this level
def TransitionDown(self, filters, previous_layer, model_layers, level):
model_layers[level] = {}
model_layers[level]['b_norm'] = BatchNormalization(mode=0, axis=3,
gamma_regularizer=l2(0.0001),
beta_regularizer=l2(0.0001))(previous_layer)
model_layers[level]['act'] = Activation('relu')(model_layers[level]['b_norm'])
model_layers[level]['conv'] = Conv2D(filters, kernel_size=(1, 1), padding='same',
kernel_initializer="he_uniform")(model_layers[level]['act'])
model_layers[level]['drop_out'] = Dropout(0.2)(model_layers[level]['conv'])
model_layers[level]['max_pool'] = MaxPooling2D(pool_size=(2, 2),
strides=(2, 2),
data_format='channels_last')(model_layers[level]['drop_out'])
return model_layers[level]['max_pool']
def TransitionUp(self,filters,input_shape,output_shape, previous_layer, model_layers, level):
model_layers[level] = {}
model_layers[level]['conv'] = Conv2DTranspose(filters, kernel_size=(3, 3), strides=(2, 2),
padding='same',
output_shape=output_shape,
input_shape=input_shape,
kernel_initializer="he_uniform",
data_format='channels_last')(previous_layer)
return model_layers[level]['conv']
def create(self):
inputs = Input((224,224,3))
first_conv = Conv2D(48, kernel_size=(3, 3), padding='same',
kernel_initializer="he_uniform",
kernel_regularizer = l2(0.0001),
data_format='channels_last')(inputs)
# first
enc_model_layers = {}
layer_1_down = self.DenseBlock(5,108, first_conv, enc_model_layers, 'layer_1_down' ) # 5*12 = 60 + 48 = 108
layer_1a_down = self.TransitionDown(108, layer_1_down, enc_model_layers, 'layer_1a_down')
layer_2_down = self.DenseBlock(5,168, layer_1a_down, enc_model_layers, 'layer_2_down' ) # 5*12 = 60 + 108 = 168
layer_2a_down = self.TransitionDown(168, layer_2_down, enc_model_layers, 'layer_2a_down')
layer_3_down = self.DenseBlock(5,228, layer_2a_down, enc_model_layers, 'layer_3_down' ) # 5*12 = 60 + 168 = 228
layer_3a_down = self.TransitionDown(228, layer_3_down, enc_model_layers, 'layer_3a_down')
layer_4_down = self.DenseBlock(5,288, layer_3a_down, enc_model_layers, 'layer_4_down' )# 5*12 = 60 + 228 = 288
layer_4a_down = self.TransitionDown(288, layer_4_down, enc_model_layers, 'layer_4a_down')
layer_5_down = self.DenseBlock(5,348, layer_4a_down, enc_model_layers, 'layer_5_down' ) # 5*12 = 60 + 288 = 348
layer_5a_down = self.TransitionDown(348, layer_5_down, enc_model_layers, 'layer_5a_down')
layer_bottleneck = self.DenseBlock(15,408, layer_5a_down, enc_model_layers, 'layer_bottleneck') # m = 348 + 5*12 = 408
layer_1_up = self.TransitionUp(468, (468, 7, 7), (None, 468, 14, 14), layer_bottleneck, enc_model_layers, 'layer_1_up') # m = 348 + 5x12 + 5x12 = 468.
skip_up_down_1 = concatenate([layer_1_up, enc_model_layers['layer_5_down']['conv'+ str(5)]], axis=-1)
layer_1a_up = self.DenseBlock(5,468, skip_up_down_1, enc_model_layers, 'layer_1a_up' )
layer_2_up = self.TransitionUp(408, (408, 14, 14), (None, 408, 28, 28), layer_1a_up, enc_model_layers, 'layer_2_up') # m = 288 + 5x12 + 5x12 = 408
skip_up_down_2 = concatenate([layer_2_up, enc_model_layers['layer_4_down']['conv'+ str(5)]], axis=-1)
layer_2a_up = self.DenseBlock(5,408, skip_up_down_2, enc_model_layers, 'layer_2a_up' )
layer_3_up = self.TransitionUp(348, (348, 28, 28), (None, 348, 56, 56), layer_2a_up, enc_model_layers, 'layer_3_up') # m = 228 + 5x12 + 5x12 = 348
skip_up_down_3 = concatenate([layer_3_up, enc_model_layers['layer_3_down']['conv'+ str(5)]], axis=-1)
layer_3a_up = self.DenseBlock(5,348, skip_up_down_3, enc_model_layers, 'layer_3a_up' )
layer_4_up = self.TransitionUp(288, (288, 56, 56), (None, 288, 112, 112), layer_3a_up, enc_model_layers, 'layer_4_up') # m = 168 + 5x12 + 5x12 = 288
skip_up_down_4 = concatenate([layer_4_up, enc_model_layers['layer_2_down']['conv'+ str(5)]], axis=-1)
layer_4a_up = self.DenseBlock(5,288, skip_up_down_4, enc_model_layers, 'layer_4a_up' )
layer_5_up = self.TransitionUp(228, (228, 112, 112), (None, 228, 224, 224), layer_4a_up, enc_model_layers, 'layer_5_up') # m = 108 + 5x12 + 5x12 = 228
skip_up_down_5 = concatenate([layer_5_up, enc_model_layers['layer_1_down']['conv'+ str(5)]], axis=-1)
layer_5a_up = self.DenseBlock(5,228, skip_up_down_5, enc_model_layers, 'concatenate' )
# last
last_conv = Conv2D(12, activation='linear',
kernel_size=(1,1),
padding='same',
kernel_regularizer = l2(0.0001),
data_format='channels_last')(layer_5a_up)
reshape = Reshape((12, 224 * 224))(last_conv)
perm = Permute((2, 1))(reshape)
act = Activation('softmax')(perm)
model = Model(inputs=[inputs], outputs=[act])
with open('tiramisu_fc_dense67_model_12_func.json', 'w') as outfile:
outfile.write(json.dumps(json.loads(model.to_json()), indent=3))
Tiramisu()