-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis_p.py
88 lines (66 loc) · 2.53 KB
/
analysis_p.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
import pandas as pd
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
import os
OUTPUT_DIR = "outputs/"
def get_accuracy(yhat, yts):
acc = np.mean(yhat == yts)
print("accuracy:", acc) # 0.852378096600083
return acc
def get_misclassified(yhat, yts, df, output_name):
# conf matrix
fmt = np.vectorize(lambda x: round(float(x), 2))
misclassified = pd.DataFrame(
fmt(
confusion_matrix(yts, yhat) / np.sum(
confusion_matrix(yts, yhat),
axis=1)[:, None]),
index=df['genre'].cat.categories, columns=df['genre'].cat.categories)
misclassified.to_csv(
os.path.join(
OUTPUT_DIR, "misclassified/{:s}_data.csv".format(output_name)))
print(misclassified)
return misclassified
def misclassified_plot(
misclassified, output_name, cmap=sns.color_palette(
"rocket_r", as_cmap=True)):
# heatmap
heatmap = sns.heatmap(misclassified, cmap=cmap, xticklabels=True)
heatmap.get_figure().savefig(
os.path.join(
OUTPUT_DIR, "misclassified/{:s}_heatmap.png".format(output_name)),
bbox_inches="tight")
def get_sorted_misclassified(misclassified, accuracy):
cutoff = accuracy
s = ""
def write_cutoff(cutoff, greater):
nonlocal s
cutoff = round(cutoff, 2)
for i, genre in enumerate(misclassified.index):
row = misclassified.loc[genre]
acc = row[genre]
def wr():
nonlocal s
s += f"Genre: {genre}, Accuracy: {acc}, Classified as: {sorted([(misclassified.columns[i], acc_2) for i, acc_2 in enumerate(row) if acc_2 > 0], key=lambda x: x[1])[::-1]}\n\n"
if greater:
if i == 0:
s += f"Over: {cutoff}\n\n"
if acc >= cutoff:
wr()
else:
if i == 0:
s += f"Under: {cutoff}\n\n"
if acc < cutoff:
wr()
write_cutoff(cutoff, True)
write_cutoff(cutoff, False)
return s
def misclassified_analysis(yhat, yts, df, output_name):
misclassified = get_misclassified(yhat, yts, df, output_name)
misclassified_plot(misclassified, output_name)
accuracy = get_accuracy(yhat, yts)
sorted_misclassified = get_sorted_misclassified(misclassified, accuracy)
with open(os.path.join(OUTPUT_DIR, f"misclassified/{output_name}.txt"), "w") as f:
print(sorted_misclassified, file=f)