-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcircuit_optimizer.py
403 lines (329 loc) · 14.3 KB
/
circuit_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import numpy as np
from typing import List, Dict, Tuple, Optional
from dataclasses import dataclass
import networkx as nx
from scipy.optimize import minimize
import cirq
from qiskit import QuantumCircuit
from qiskit.quantum_info import Operator, process_fidelity
from qiskit.circuit.library import (
QFT, HGate, CXGate, PhaseGate,
RZZGate, RXXGate, CZGate
)
@dataclass
class OptimizationTarget:
"""Target specifications for circuit optimization"""
unitary: Optional[np.ndarray] = None
state_vector: Optional[np.ndarray] = None
algorithm_type: Optional[str] = None # e.g., 'qft', 'grover', 'vqe'
max_depth: Optional[int] = None
max_two_qubit_gates: Optional[int] = None
required_fidelity: float = 0.99
optimization_level: int = 2 # 0: Basic, 1: Standard, 2: Aggressive
@dataclass
class CircuitTemplate:
"""Quantum circuit template for pattern matching"""
pattern: List[Tuple[str, List[int]]] # (gate_name, qubits)
replacement: List[Tuple[str, List[int]]]
cost_reduction: float
fidelity_impact: float
class QuantumCircuitOptimizer:
def __init__(self, num_qubits: int, hardware_constraints=None):
self.num_qubits = num_qubits
self.hardware_constraints = hardware_constraints
self.templates = self._initialize_templates()
self.equivalence_graph = self._build_equivalence_graph()
def _initialize_templates(self) -> List[CircuitTemplate]:
"""Initialize common circuit transformation templates"""
return [
# CNOT-based templates
CircuitTemplate(
pattern=[('cx', [0, 1]), ('cx', [0, 1])],
replacement=[],
cost_reduction=2.0,
fidelity_impact=1.0
),
# Hadamard cancellation
CircuitTemplate(
pattern=[('h', [0]), ('h', [0])],
replacement=[],
cost_reduction=2.0,
fidelity_impact=1.0
),
# CNOT-Rotation merge
CircuitTemplate(
pattern=[('cx', [0, 1]), ('rz', [1]), ('cx', [0, 1])],
replacement=[('rzz', [0, 1])],
cost_reduction=1.0,
fidelity_impact=0.95
),
# Phase gate combination
CircuitTemplate(
pattern=[('p', [0]), ('p', [0])],
replacement=[('p', [0])], # Combined phase
cost_reduction=1.0,
fidelity_impact=1.0
)
]
def _build_equivalence_graph(self) -> nx.DiGraph:
"""Build a graph of quantum circuit equivalences"""
G = nx.DiGraph()
# Add basic gate sequences and their equivalents
basic_equivalences = [
(('h', 'cx', 'h'), ('cz',)),
(('rx', 'rz'), ('u3',)),
(('h', 'h'), ()),
(('cx', 'cx'), ()),
(('rzz', 'ryy'), ('fsim',))
]
for original, equivalent in basic_equivalences:
G.add_edge(original, equivalent, weight=len(equivalent))
return G
def optimize_circuit(self, circuit: QuantumCircuit,
target: OptimizationTarget) -> QuantumCircuit:
"""Optimize quantum circuit based on target specifications"""
optimized = circuit.copy()
# Apply optimization stages based on level
if target.optimization_level >= 0:
optimized = self._apply_basic_optimization(optimized)
if target.optimization_level >= 1:
optimized = self._apply_template_matching(optimized)
optimized = self._apply_commutation_rules(optimized)
if target.optimization_level >= 2:
optimized = self._apply_quantum_shannon_decomposition(optimized)
optimized = self._optimize_for_hardware(optimized)
return optimized
def _apply_basic_optimization(self, circuit: QuantumCircuit) -> QuantumCircuit:
"""Apply basic circuit optimization techniques"""
optimized = circuit.copy()
# Gate cancellation
optimized = self._cancel_adjacent_gates(optimized)
# Merge single-qubit gates
optimized = self._merge_single_qubit_gates(optimized)
# Remove redundant gates
optimized = self._remove_redundant_gates(optimized)
return optimized
def _apply_template_matching(self, circuit: QuantumCircuit) -> QuantumCircuit:
"""Apply template-based optimization"""
optimized = circuit.copy()
modified = True
while modified:
modified = False
for template in self.templates:
matches = self._find_template_matches(optimized, template)
if matches:
optimized = self._apply_template_replacement(
optimized, matches, template
)
modified = True
return optimized
def _apply_commutation_rules(self, circuit: QuantumCircuit) -> QuantumCircuit:
"""Apply quantum gate commutation rules for optimization"""
optimized = circuit.copy()
# Build dependency graph
dep_graph = self._build_dependency_graph(optimized)
# Find independent gate sets
independent_sets = self._find_independent_gates(dep_graph)
# Reorder gates to maximize parallelization
optimized = self._reorder_gates(optimized, independent_sets)
return optimized
def _apply_quantum_shannon_decomposition(self,
circuit: QuantumCircuit) -> QuantumCircuit:
"""Apply Quantum Shannon Decomposition for circuit optimization"""
# Convert circuit to unitary
unitary = Operator(circuit).data
# Perform cosine-sine decomposition
optimized = self._cosine_sine_decomposition(unitary)
# Convert back to quantum circuit
return self._unitary_to_circuit(optimized)
def _optimize_for_hardware(self, circuit: QuantumCircuit) -> QuantumCircuit:
"""Optimize circuit for specific hardware constraints"""
if not self.hardware_constraints:
return circuit
optimized = circuit.copy()
# Map to hardware topology
optimized = self._map_to_topology(optimized)
# Optimize for gate fidelities
optimized = self._optimize_gate_fidelities(optimized)
# Balance depth vs. gate count
optimized = self._balance_depth_gates(optimized)
return optimized
def estimate_resources(self, circuit: QuantumCircuit) -> Dict[str, float]:
"""Estimate quantum resources required for the circuit"""
return {
'depth': circuit.depth(),
'gate_count': len(circuit.data),
'two_qubit_gate_count': sum(
1 for inst in circuit.data if len(inst.qubits) == 2
),
'estimated_time': self._estimate_execution_time(circuit),
'estimated_error_rate': self._estimate_error_rate(circuit),
'qubit_connectivity_score': self._calculate_connectivity_score(circuit)
}
def verify_equivalence(self, circuit1: QuantumCircuit,
circuit2: QuantumCircuit,
tolerance: float = 1e-6) -> bool:
"""Verify if two circuits are functionally equivalent"""
# Convert circuits to operators
op1 = Operator(circuit1)
op2 = Operator(circuit2)
# Calculate process fidelity
fidelity = process_fidelity(op1, op2)
return fidelity >= (1 - tolerance)
def _find_template_matches(self, circuit: QuantumCircuit,
template: CircuitTemplate) -> List[int]:
"""Find matches of template patterns in the circuit"""
matches = []
circuit_gates = [
(inst.operation.name, [q.index for q in inst.qubits])
for inst in circuit.data
]
pattern = template.pattern
pattern_len = len(pattern)
for i in range(len(circuit_gates) - pattern_len + 1):
if all(
circuit_gates[i + j][0] == pattern[j][0] and
circuit_gates[i + j][1] == pattern[j][1]
for j in range(pattern_len)
):
matches.append(i)
return matches
def _build_dependency_graph(self, circuit: QuantumCircuit) -> nx.Graph:
"""Build a graph representing gate dependencies"""
G = nx.Graph()
for i, inst1 in enumerate(circuit.data):
G.add_node(i, gate=inst1)
for j, inst2 in enumerate(circuit.data[i+1:], i+1):
if self._gates_commute(inst1, inst2):
G.add_edge(i, j)
return G
def _gates_commute(self, gate1, gate2) -> bool:
"""Check if two gates commute"""
# Get qubits affected by each gate
qubits1 = set(q.index for q in gate1.qubits)
qubits2 = set(q.index for q in gate2.qubits)
# Gates on different qubits always commute
if not qubits1.intersection(qubits2):
return True
# Check known commutation rules
if gate1.operation.name == gate2.operation.name:
if gate1.operation.name in ['z', 'rz', 'phase']:
return True
return False
def _estimate_execution_time(self, circuit: QuantumCircuit) -> float:
"""Estimate circuit execution time based on gate times"""
if not self.hardware_constraints:
return sum(1.0 for _ in circuit.data)
total_time = 0.0
for inst in circuit.data:
gate_name = inst.operation.name
total_time += self.hardware_constraints.gate_times.get(gate_name, 1.0)
return total_time
def _estimate_error_rate(self, circuit: QuantumCircuit) -> float:
"""Estimate overall circuit error rate"""
if not self.hardware_constraints:
return len(circuit.data) * 0.001 # Basic estimate
error_rate = 0.0
for inst in circuit.data:
if len(inst.qubits) == 2:
q1, q2 = inst.qubits
error_rate += self.hardware_constraints.error_rates.get(
(q1.index, q2.index), 0.01
)
else:
error_rate += 0.001 # Single-qubit gate error
return error_rate
def _calculate_connectivity_score(self, circuit: QuantumCircuit) -> float:
"""Calculate how well the circuit matches hardware connectivity"""
if not self.hardware_constraints:
return 1.0
score = 0.0
total_two_qubit_gates = 0
for inst in circuit.data:
if len(inst.qubits) == 2:
total_two_qubit_gates += 1
q1, q2 = inst.qubits
if q2.index in self.hardware_constraints.connectivity_map.get(
q1.index, []
):
score += 1.0
return score / total_two_qubit_gates if total_two_qubit_gates > 0 else 1.0
def decompose_algorithm(self, algorithm_type: str,
params: Dict) -> QuantumCircuit:
"""Generate optimized circuits for common quantum algorithms"""
if algorithm_type == 'qft':
return self._optimize_qft(params.get('n_qubits', self.num_qubits))
elif algorithm_type == 'grover':
return self._optimize_grover(params)
elif algorithm_type == 'vqe':
return self._optimize_vqe(params)
else:
raise ValueError(f"Unknown algorithm type: {algorithm_type}")
def _optimize_qft(self, n_qubits: int) -> QuantumCircuit:
"""Generate optimized Quantum Fourier Transform circuit"""
qft = QFT(n_qubits)
return self.optimize_circuit(
qft,
OptimizationTarget(
algorithm_type='qft',
optimization_level=2
)
)
def _optimize_grover(self, params: Dict) -> QuantumCircuit:
"""Generate optimized Grover's algorithm circuit"""
oracle = params.get('oracle')
n_iterations = params.get('iterations', 1)
circuit = QuantumCircuit(self.num_qubits)
# Initialize superposition
for i in range(self.num_qubits):
circuit.h(i)
# Apply Grover iterations
for _ in range(n_iterations):
# Oracle
circuit.compose(oracle, inplace=True)
# Diffusion operator
for i in range(self.num_qubits):
circuit.h(i)
for i in range(self.num_qubits):
circuit.x(i)
circuit.h(self.num_qubits - 1)
circuit.mct(
list(range(self.num_qubits - 1)),
self.num_qubits - 1
)
circuit.h(self.num_qubits - 1)
for i in range(self.num_qubits):
circuit.x(i)
for i in range(self.num_qubits):
circuit.h(i)
return self.optimize_circuit(
circuit,
OptimizationTarget(
algorithm_type='grover',
optimization_level=2
)
)
def _optimize_vqe(self, params: Dict) -> QuantumCircuit:
"""Generate optimized Variational Quantum Eigensolver circuit"""
hamiltonian = params.get('hamiltonian')
depth = params.get('depth', 3)
circuit = QuantumCircuit(self.num_qubits)
# Initial state preparation
for i in range(self.num_qubits):
circuit.ry(np.pi/4, i)
# Variational layers
for _ in range(depth):
# Entangling layer
for i in range(self.num_qubits - 1):
circuit.cx(i, i + 1)
# Rotation layer
for i in range(self.num_qubits):
circuit.ry(np.pi/4, i)
circuit.rz(np.pi/4, i)
return self.optimize_circuit(
circuit,
OptimizationTarget(
algorithm_type='vqe',
optimization_level=2
)
)