-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_unet_comp.py
131 lines (109 loc) · 3.92 KB
/
test_unet_comp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
from pathlib import Path
from argparse import ArgumentParser
import torch
import pytorch_lightning as pl
from pl_modules import FastMriDataModule, UnetModule
from data.mri_data import fetch_dir
from data.masking import create_mask_for_mask_type
from data.transforms import DCDIDNDataTransform
torch.set_float32_matmul_precision('medium')
def build_args():
parser = ArgumentParser()
# basic args
path_config = Path("Dataset/fastmri_dirs.yaml")
num_gpus = 1
batch_size = 1
data_path = fetch_dir("knee_path", path_config)
default_root_dir = fetch_dir("log_path", path_config) / "unet_comp"
parser.add_argument("--mode", default="test", type=str, choices=["train", "test"])
parser.add_argument("--mask_type", default="random", type=str, choices=["random", "equispaced"])
parser.add_argument("--center_fractions", default=[0.08], type=list)
parser.add_argument("--accelerations", default=[4], type=list)
parser.add_argument("--ckpt_path", default=None, type=str)
parser = FastMriDataModule.add_data_specific_args(parser)
parser = UnetModule.add_model_specific_args(parser)
parser.set_defaults(
data_path=data_path,
gpus=num_gpus,
seed=42,
batch_size=batch_size,
default_root_dir=default_root_dir,
max_epochs=100,
test_path=data_path / "singlecoil_val",
noise_lvl=0.0,
in_chans=2,
out_chans=2,
)
args = parser.parse_args()
print('noise_lvl', args.noise_lvl)
# checkpoints
checkpoint_dir = args.default_root_dir / "checkpoints"
if not checkpoint_dir.exists():
checkpoint_dir.mkdir(parents=True)
args.callbacks = [
pl.callbacks.ModelCheckpoint(
dirpath=checkpoint_dir,
save_top_k=5,
verbose=True,
monitor="validation_loss",
mode="min",
)
]
if args.ckpt_path is None:
ckpt_list = sorted(checkpoint_dir.glob("*.ckpt"), key=os.path.getmtime)
if ckpt_list:
args.ckpt_path = str(ckpt_list[-1])
print(args.ckpt_path)
return args
def main():
args = build_args()
pl.seed_everything(args.seed)
# * data
# masking
mask = create_mask_for_mask_type(args.mask_type, args.center_fractions, args.accelerations)
# data transform
train_transform = DCDIDNDataTransform(args.challenge, mask_func=mask, use_seed=False)
val_transform = DCDIDNDataTransform(args.challenge, mask_func=mask, use_seed=True)
test_transform = DCDIDNDataTransform(args.challenge, mask_func=mask, use_seed=True, noise_lvl=args.noise_lvl)
# pl data module
data_module = FastMriDataModule(
data_path=args.data_path,
challenge=args.challenge,
train_transform=train_transform,
val_transform=val_transform,
test_transform=test_transform,
test_split=args.test_split,
test_path=args.test_path,
sample_rate=args.sample_rate,
batch_size=args.batch_size,
num_workers=args.num_workers,
)
# * model
model = UnetModule(
in_chans=args.in_chans,
out_chans=args.out_chans,
chans=args.chans,
num_pool_layers=args.num_pool_layers,
drop_prob=args.drop_prob,
lr=args.lr,
lr_step_size=args.lr_step_size,
lr_gamma=args.lr_gamma,
weight_decay=args.weight_decay,
)
# * trainer
trainer = pl.Trainer(
logger=True,
callbacks=args.callbacks,
max_epochs=args.max_epochs,
default_root_dir=args.default_root_dir,
)
# * run
if args.mode == 'train':
trainer.fit(model, data_module, ckpt_path=args.ckpt_path)
elif args.mode == 'test':
trainer.test(model, data_module, ckpt_path=args.ckpt_path)
else:
raise ValueError(f'Invalid mode: {args.mode}')
if __name__ == '__main__':
main()