-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathapi_server.py
442 lines (361 loc) · 13.4 KB
/
api_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import json
import time
import asyncio
from queue import Queue
from threading import Thread
from contextlib import asynccontextmanager
from typing import List, Literal, Optional, Union
import torch
import uvicorn
from loguru import logger
from pydantic import BaseModel, Field
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers.generation.logits_process import LogitsProcessor
from sse_starlette.sse import EventSourceResponse
EventSourceResponse.DEFAULT_PING_INTERVAL = 1000
@asynccontextmanager
async def lifespan(app: FastAPI):
yield
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
streamer_queue = Queue()
class ModelCard(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "owner"
root: Optional[str] = None
parent: Optional[str] = None
permission: Optional[list] = None
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
class FunctionCallResponse(BaseModel):
name: Optional[str] = None
arguments: Optional[str] = None
class ChatMessage(BaseModel):
role: Literal["user", "assistant", "system", "function"]
content: str = None
tool_calls: Optional[list] = None
class DeltaMessage(BaseModel):
role: Optional[Literal["user", "assistant", "system"]] = None
content: Optional[str] = None
tool_calls: Optional[list] = None
class UsageInfo(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = 0.8
top_p: Optional[float] = 0.8
max_tokens: Optional[int] = None
tools: Optional[Union[dict, List[dict]]] = None
repetition_penalty: Optional[float] = 1.1
stream: Optional[bool] = False
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: Literal["stop", "length", "tool_calls"]
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length", "tool_calls"]]
class ChatCompletionResponse(BaseModel):
id: str
model: str
object: Literal["chat.completion", "chat.completion.chunk"]
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
usage: Optional[UsageInfo] = None
class InvalidScoreLogitsProcessor(LogitsProcessor):
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
) -> torch.FloatTensor:
if torch.isnan(scores).any() or torch.isinf(scores).any():
scores.zero_()
scores[..., 5] = 5e4
return scores
class CustomStreamer(TextStreamer):
def __init__(self, queue, tokenizer, skip_prompt, **decode_kwargs) -> None:
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
self._queue = queue
self.stop_signal = None
self.timeout = 1
def on_finalized_text(self, text: str, stream_end: bool = False):
if text != "":
self._queue.put(text)
if stream_end:
self._queue.put(self.stop_signal)
def process_bluelm_messages(messages, tools=None):
_messages = messages
messages = []
if tools:
tool_system_content = "你是一个AI助手,尽你所能回答用户的问题,你可以使用的工具如下:\n<APIs>\n- "
tool_system_content += str("\n- ".join([str(i) for i in tools]))
tool_system_content += '\n</APIs>\n你需要根据用户问题,选择合适的工具,输出的格式为:\n{"answer":"给用户的回复","function_calls":[{"name":"函数名","parameters":{"参数名":"参数"}}]}\n如果不需要额外回复或者没有合适工具,则对应字段输出空。\n'
messages.append(
{
"role": "system",
"content": tool_system_content,
"tools": tools
}
)
for m in _messages:
role, content, tool_calls = m.role, m.content, m.tool_calls
if role == "function":
messages.append(
{
"role": "observation",
"content": content
}
)
elif role == "assistant" and tool_calls is not None:
rewrite_function_calls = []
for tool_call in tool_calls:
rewrite_function_calls.append({
"name": tool_call["name"],
"parameters": tool_call["arguments"]
})
content = json.dumps(
{
"answer": None,
"function_calls": rewrite_function_calls
},
ensure_ascii=False
)
messages.append({"role": role, "content": content})
else:
messages.append({"role": role, "content": content})
return messages
def build_chat_input(query, history, role):
if history is None:
history = []
prompt = ""
for item in history:
content = item["content"]
if item["role"] == "system":
prompt += "[|SYSTEM|]:"
prompt += content
if item["role"] == "user":
prompt += "[|Human|]:"
prompt += content
if item["role"] == "assistant":
prompt += "[|AI|]:"
prompt += content
prompt += "</s>"
if item["role"] == "observation":
prompt += "[|Function|]:"
prompt += content
if role == "observation":
prompt += "[|Function|]:"
else:
prompt += "[|Human|]:"
prompt += query
prompt += "[|AI|]:"
return prompt
@torch.inference_mode()
def start_generation(model, tokenizer, params):
messages = params["messages"]
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
max_new_tokens = int(params.get("max_tokens", 256))
echo = params.get("echo", True)
repetition_penalty = float(params.get("repetition_penalty", 1.0))
tools = params["tools"]
messages = process_bluelm_messages(messages, tools=tools)
query, role = messages[-1]["content"], messages[-1]["role"]
prompt = build_chat_input(query=query, history=messages[:-1], role=role)
inputs = tokenizer(prompt, return_tensors="pt")
inputs = inputs.to(model.device)
eos_token_id = [
tokenizer.eos_token_id,
tokenizer._convert_token_to_id("[|Human|]:"),
]
streamer = CustomStreamer(streamer_queue, tokenizer, True, skip_special_tokens=True)
gen_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True if temperature > 1e-5 else False,
top_p=top_p,
repetition_penalty=repetition_penalty,
logits_processor=[InvalidScoreLogitsProcessor()],
eos_token_id=eos_token_id,
temperature=temperature,
)
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
async def stream_generator(model, tokenizer, params):
start_generation(model, tokenizer, params)
model_id = params.get("model_id", "bluelm-7b")
while True:
value = streamer_queue.get()
if value is None:
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason="stop"
)
chunk = ChatCompletionResponse(
model=model_id,
id="",
choices=[choice_data],
created=int(time.time()),
object="chat.completion.chunk"
)
yield "{}".format(chunk.json(exclude_unset=True))
yield "[DONE]"
break
message = DeltaMessage(
content=value,
role="assistant",
tool_calls=None,
)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=message,
finish_reason=None
)
chunk = ChatCompletionResponse(
model=model_id,
id="",
choices=[choice_data],
created=int(time.time()),
object="chat.completion.chunk"
)
yield "{}".format(chunk.json(exclude_unset=True))
streamer_queue.task_done()
await asyncio.sleep(0.1)
def generator(model, tokenizer, params):
messages = params["messages"]
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
max_new_tokens = int(params.get("max_tokens", 256))
echo = params.get("echo", True)
repetition_penalty = float(params.get("repetition_penalty", 1.0))
tools = params["tools"]
messages = process_bluelm_messages(messages, tools=tools)
query, role = messages[-1]["content"], messages[-1]["role"]
prompt = build_chat_input(query=query, history=messages[:-1], role=role)
inputs = tokenizer(prompt, return_tensors="pt")
inputs = inputs.to(model.device)
input_echo_len = len(inputs["input_ids"][0])
eos_token_id = [
tokenizer.eos_token_id,
tokenizer._convert_token_to_id("[|Human|]:"),
]
gen_kwargs = dict(
inputs,
max_new_tokens=max_new_tokens,
do_sample=True if temperature > 1e-5 else False,
top_p=top_p,
repetition_penalty=repetition_penalty,
logits_processor=[InvalidScoreLogitsProcessor()],
eos_token_id=eos_token_id,
temperature=temperature,
)
output = model.generate(**gen_kwargs).cpu()
total_len = len(output[0])
if echo:
text = tokenizer.decode(output[0], skip_special_tokens=True)
else:
text = tokenizer.decode(output[0][input_echo_len:], skip_special_tokens=True)
return {
"text": text,
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": total_len - input_echo_len,
"total_tokens": total_len
}
}
def parse_response(response):
try:
text_json = json.loads(response["text"])
if "function_calls" in text_json and len(text_json["function_calls"]) > 0:
text = text_json["answer"]
function_call_lst = text_json["function_calls"]
tool_calls = []
for item in function_call_lst:
tool_calls.append(
FunctionCallResponse(
name=item["name"],
arguments=item["parameters"]
)
)
return text, tool_calls
except:
return response["text"], None
@app.get("/v1/models", response_model=ModelList)
async def list_models():
model_card = ModelCard(id="bluelm-7b")
return ModelList(data=[model_card])
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
global model, tokenizer
if len(request.messages) < 1 or request.messages[-1].role == "assistant":
raise HTTPException(status_code=400, detail="Invalid request")
gen_params = dict(
messages=request.messages,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens or 1024,
echo=False,
stream=request.stream,
repetition_penalty=request.repetition_penalty,
tools=request.tools,
model_id=request.model,
)
logger.debug(f"==== request ====\n{gen_params}")
if request.stream:
if request.tools:
raise HTTPException(
status_code=400,
detail=
"Invalid request: Function calling is not yet implemented for stream mode.",
)
return EventSourceResponse(stream_generator(model, tokenizer, gen_params), media_type="text/event-stream")
else:
gen_result = generator(model, tokenizer, gen_params)
tool_calls, finish_reason = None, "stop"
text = gen_result["text"]
if request.tools:
text, tool_calls = parse_response(gen_result)
if tool_calls is not None and len(tool_calls) > 0:
finish_reason = "tool_calls"
message = ChatMessage(
role="assistant",
content=text,
tool_calls=tool_calls
)
choice_data = ChatCompletionResponseChoice(
index=0,
message=message,
finish_reason=finish_reason,
)
usage = UsageInfo(**gen_result["usage"])
return ChatCompletionResponse(
model=request.model,
id="",
choices=[choice_data],
object="chat.completion",
usage=usage
)
if __name__ == "__main__":
MODEL_ID = "vivo-ai/BlueLM-7B-Chat-32K"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="cuda:0", torch_dtype=torch.bfloat16, trust_remote_code=True)
model = model.eval()
uvicorn.run(app, host="0.0.0.0", port=7776, workers=1)