From eb9bffccd0ef5456fd793d19bdfafe3adacb2a89 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Fri, 6 Sep 2024 22:34:47 -0700 Subject: [PATCH] fix typo --- tests/compile/test_wrapper.py | 4 ++-- vllm/compilation/wrapper.py | 2 +- vllm/worker/tpu_model_runner.py | 4 ++-- 3 files changed, 5 insertions(+), 5 deletions(-) diff --git a/tests/compile/test_wrapper.py b/tests/compile/test_wrapper.py index cef516ade27eb..3668c1fab6b89 100644 --- a/tests/compile/test_wrapper.py +++ b/tests/compile/test_wrapper.py @@ -2,7 +2,7 @@ import torch -from vllm.compilation.wrapper import TorchCompileWrapperWithCustomDispacther +from vllm.compilation.wrapper import TorchCompileWrapperWithCustomDispatcher class MyMod(torch.nn.Module): @@ -13,7 +13,7 @@ def forward(self, x: torch.Tensor, cache: Optional[torch.Tensor] = None): return x * 2 -class MyWrapper(TorchCompileWrapperWithCustomDispacther): +class MyWrapper(TorchCompileWrapperWithCustomDispatcher): def __init__(self, model): self.model = model diff --git a/vllm/compilation/wrapper.py b/vllm/compilation/wrapper.py index c3d863299dd06..e923bd36ccc08 100644 --- a/vllm/compilation/wrapper.py +++ b/vllm/compilation/wrapper.py @@ -10,7 +10,7 @@ import vllm.envs as envs -class TorchCompileWrapperWithCustomDispacther: +class TorchCompileWrapperWithCustomDispatcher: """ A wrapper class for torch.compile, with a custom dispatch logic. Subclasses should: diff --git a/vllm/worker/tpu_model_runner.py b/vllm/worker/tpu_model_runner.py index 684c54b7d8139..db306bc743d3a 100644 --- a/vllm/worker/tpu_model_runner.py +++ b/vllm/worker/tpu_model_runner.py @@ -11,7 +11,7 @@ import torch_xla.runtime as xr from vllm.attention import AttentionMetadata, get_attn_backend -from vllm.compilation.wrapper import TorchCompileWrapperWithCustomDispacther +from vllm.compilation.wrapper import TorchCompileWrapperWithCustomDispatcher from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, ModelConfig, ParallelConfig, SchedulerConfig) from vllm.logger import init_logger @@ -611,7 +611,7 @@ def _execute_model(*args): return [SamplerOutput(sampler_outputs)] -class ModelWrapper(TorchCompileWrapperWithCustomDispacther): +class ModelWrapper(TorchCompileWrapperWithCustomDispatcher): def __init__(self, model: nn.Module): self.model = model