-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathxyz_dv_eprom.ino
468 lines (403 loc) · 11.4 KB
/
xyz_dv_eprom.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/*
Da Vinci EEPROM update Copyright (C) 2014 by Oliver Fueckert <oliver@voltivo.com>
Increment Serial code - contributed by Matt
UNI/O Library Copyright (C) 2011 by Stephen Early <steve@greenend.org.uk>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/************************************************************
Pinout looking at the pads on the EEPROM board
-------------------\
| \
| GND SCIO +5V \
| |
----------------------
*************************************************************/
#ifndef _NANODEUNIO_LIB_H
#define _NANODEUNIO_LIB_H
#if ARDUINO >= 100
#include <Arduino.h> // Arduino 1.0
#else
#include <WProgram.h> // Arduino 0022
#endif
#define NANODE_MAC_DEVICE 0xa0
#define NANODE_MAC_ADDRESS 0xfa
#define CODE 0x00 //1 Byte
#define MATERIAL 0x01 //1 Byte
#define COLOR 0x02 //2 Bytes
#define DATE 0x05 //4 Bytes
#define TOTALLEN 0x08 //4 Bytes
#define NEWLEN 0x0C //4 Bytes
#define HEADTEMP 0x10 //2 Bytes
#define BEDTEMP 0x12 //2Bytes
#define MLOC 0x14 //2 Bytes
#define DLOC 0x16 //2 Bytes
#define SN 0x18 //12 Bytes
#define CRC 0x24 //2 Bytes
#define LEN2 0x34 //4 Bytes
void IncrementSerial(unsigned char * cArray, long lAddress, long lSize)
{
unsigned char szTempBuffer[20] = {0};
memcpy(szTempBuffer,&cArray[lAddress],lSize);
long lSerial = atol((char *)szTempBuffer);
lSerial++;
sprintf((char *)szTempBuffer,"%04d",lSerial);
memcpy(&cArray[lAddress],szTempBuffer,lSize);
}
class NanodeUNIO {
private:
byte addr;
public:
NanodeUNIO(byte address);
boolean read(byte *buffer,word address,word length);
boolean start_write(const byte *buffer,word address,word length);
boolean enable_write(void);
boolean disable_write(void);
boolean read_status(byte *status);
boolean write_status(byte status);
boolean await_write_complete(void);
boolean simple_write(const byte *buffer,word address,word length);
};
#endif /* _NANODEUNIO_LIB_H */
#define UNIO_STARTHEADER 0x55
#define UNIO_READ 0x03
#define UNIO_CRRD 0x06
#define UNIO_WRITE 0x6c
#define UNIO_WREN 0x96
#define UNIO_WRDI 0x91
#define UNIO_RDSR 0x05
#define UNIO_WRSR 0x6e
#define UNIO_ERAL 0x6d
#define UNIO_SETAL 0x67
#define UNIO_TSTBY 600
#define UNIO_TSS 10
#define UNIO_THDR 5
#define UNIO_QUARTER_BIT 10
#define UNIO_FUDGE_FACTOR 5
#if defined(__AVR__)
#define UNIO_OUTPUT() do { DDRD |= 0x80; } while (0)
#define UNIO_INPUT() do { DDRD &= 0x7f; } while (0)
#else
#define UNIO_PIN 10
#define UNIO_OUTPUT() pinMode(UNIO_PIN, OUTPUT)
#define UNIO_INPUT() pinMode(UNIO_PIN, INPUT);
void sei() {
enableInterrupts();
}
void cli() {
disableInterrupts();
}
#endif
static void set_bus(boolean state) {
#if defined(__AVR__)
PORTD=(PORTD&0x7f)|(!!state)<<7;
#else
digitalWrite(UNIO_PIN, state);
#endif
}
static boolean read_bus(void) {
#if defined(__AVR__)
return !!(PIND&0x80);
#else
return digitalRead(UNIO_PIN);
#endif
}
static void unio_inter_command_gap(void) {
set_bus(1);
delayMicroseconds(UNIO_TSS+UNIO_FUDGE_FACTOR);
}
static void unio_standby_pulse(void) {
set_bus(0);
UNIO_OUTPUT();
delayMicroseconds(UNIO_TSS+UNIO_FUDGE_FACTOR);
set_bus(1);
delayMicroseconds(UNIO_TSTBY+UNIO_FUDGE_FACTOR);
}
static volatile boolean rwbit(boolean w) {
boolean a,b;
set_bus(!w);
delayMicroseconds(UNIO_QUARTER_BIT);
a=read_bus();
delayMicroseconds(UNIO_QUARTER_BIT);
set_bus(w);
delayMicroseconds(UNIO_QUARTER_BIT);
b=read_bus();
delayMicroseconds(UNIO_QUARTER_BIT);
return b&&!a;
}
static boolean read_bit(void) {
boolean b;
UNIO_INPUT();
b=rwbit(1);
UNIO_OUTPUT();
return b;
}
static boolean send_byte(byte b, boolean mak) {
for (int i=0; i<8; i++) {
rwbit(b&0x80);
b<<=1;
}
rwbit(mak);
return read_bit();
}
static boolean read_byte(byte *b, boolean mak) {
byte data=0;
UNIO_INPUT();
for (int i=0; i<8; i++) {
data = (data << 1) | rwbit(1);
}
UNIO_OUTPUT();
*b=data;
rwbit(mak);
return read_bit();
}
static boolean unio_send(const byte *data,word length,boolean end) {
for (word i=0; i<length; i++) {
if (!send_byte(data[i],!(((i+1)==length) && end))) return false;
}
return true;
}
static boolean unio_read(byte *data,word length) {
for (word i=0; i<length; i++) {
if (!read_byte(data+i,!((i+1)==length))) return false;
}
return true;
}
static void unio_start_header(void) {
set_bus(0);
delayMicroseconds(UNIO_THDR+UNIO_FUDGE_FACTOR);
send_byte(UNIO_STARTHEADER,true);
}
NanodeUNIO::NanodeUNIO(byte address) {
addr=address;
}
#define fail() do { sei(); return false; } while (0)
boolean NanodeUNIO::read(byte *buffer,word address,word length) {
byte cmd[4];
cmd[0]=addr;
cmd[1]=UNIO_READ;
cmd[2]=(byte)(address>>8);
cmd[3]=(byte)(address&0xff);
unio_standby_pulse();
cli();
unio_start_header();
if (!unio_send(cmd,4,false)) fail();
if (!unio_read(buffer,length)) fail();
sei();
return true;
}
boolean NanodeUNIO::start_write(const byte *buffer,word address,word length) {
byte cmd[4];
if (((address&0x0f)+length)>16) return false; // would cross page boundary
cmd[0]=addr;
cmd[1]=UNIO_WRITE;
cmd[2]=(byte)(address>>8);
cmd[3]=(byte)(address&0xff);
unio_standby_pulse();
cli();
unio_start_header();
if (!unio_send(cmd,4,false)) fail();
if (!unio_send(buffer,length,true)) fail();
sei();
return true;
}
boolean NanodeUNIO::enable_write(void) {
byte cmd[2];
cmd[0]=addr;
cmd[1]=UNIO_WREN;
unio_standby_pulse();
cli();
unio_start_header();
if (!unio_send(cmd,2,true)) fail();
sei();
return true;
}
boolean NanodeUNIO::disable_write(void) {
byte cmd[2];
cmd[0]=addr;
cmd[1]=UNIO_WRDI;
unio_standby_pulse();
cli();
unio_start_header();
if (!unio_send(cmd,2,true)) fail();
sei();
return true;
}
boolean NanodeUNIO::read_status(byte *status) {
byte cmd[2];
cmd[0]=addr;
cmd[1]=UNIO_RDSR;
unio_standby_pulse();
cli();
unio_start_header();
if (!unio_send(cmd,2,false)) fail();
if (!unio_read(status,1)) fail();
sei();
return true;
}
boolean NanodeUNIO::write_status(byte status) {
byte cmd[3];
cmd[0]=addr;
cmd[1]=UNIO_WRSR;
cmd[2]=status;
unio_standby_pulse();
cli();
unio_start_header();
if (!unio_send(cmd,3,true)) fail();
sei();
return true;
}
boolean NanodeUNIO::await_write_complete(void) {
byte cmd[2];
byte status;
cmd[0]=addr;
cmd[1]=UNIO_RDSR;
unio_standby_pulse();
do {
unio_inter_command_gap();
cli();
unio_start_header();
if (!unio_send(cmd,2,false)) fail();
if (!unio_read(&status,1)) fail();
sei();
} while (status&0x01);
return true;
}
boolean NanodeUNIO::simple_write(const byte *buffer,word address,word length) {
word wlen;
while (length>0) {
wlen=length;
if (((address&0x0f)+wlen)>16) {
wlen=16-(address&0x0f);
}
if (!enable_write()) return false;
if (!start_write(buffer,address,wlen)) return false;
if (!await_write_complete()) return false;
buffer+=wlen;
address+=wlen;
length-=wlen;
}
return true;
}
static void status(boolean r)
{
if (r) Serial.println("(success)");
else Serial.println("(failure)");
}
static void dump_eeprom(word address,word length)
{
byte buf[128];
char lbuf[80];
char *x;
int i,j;
NanodeUNIO unio(NANODE_MAC_DEVICE);
memset(buf,0,128);
status(unio.read(buf,address,length));
for (i=0; i<128; i+=16) {
x=lbuf;
sprintf(x,"%02X: ",i);
x+=4;
for (j=0; j<16; j++) {
sprintf(x,"%02X",buf[i+j]);
x+=2;
}
*x=32;
x+=1;
for (j=0; j<16; j++) {
if (buf[i+j]>=32 && buf[i+j]<127) *x=buf[i+j];
else *x=46;
x++;
}
*x=0;
Serial.println(lbuf);
}
}
int led = LED_BUILTIN;
/*
These are the values to be written to the EEPROM
Make sure only one is uncommented.
By default its set for the starter ABS cartdridge with 120m of filament
Verified with firmware 1.1.I
*/
// Value to write to the EEPROM for remaining filament lenght
// Default Starter Cartdridge is 120m
char x[] = {0xc0,0xd4,0x01,0x00}; //120m
//char x[] = {0x80,0xa9,0x03,0x00}; //240m
//char x[] = {0x80,0x1a,0x06,0x00}; //400m
// extruder temp, default is 210 C for ABS
char et[] = {0xd2,0x00}; // 210 C
//char et[] = {0xe6,0x00}; // 230 C
//char et[] = {0xf5,0x00}; // 245 C
//char et[] = {0xfa,0x00}; // 250 C
// bed temp 90 degrees, default ABS
char bt[] = {0x5a,0x00}; //90C
//char bt[] = {0x32,0x00}; //50C
//char bt[] = {0x28,0x00}; //40C
//Materials
//char mt[] = {0x41}; //ABS
//char mt[] = {0x50}; //PLA
char mt[] = {0x46}; //Flex
byte sr;
NanodeUNIO unio(NANODE_MAC_DEVICE);
void setup() {
pinMode(led, OUTPUT);
Serial.begin(115200);
while(!Serial);
delay(250);
}
void loop() {
do {
digitalWrite(led, LOW);
Serial.println("Testing connection to Da Vinci EEPROM CHIP\n");
delay(100);
digitalWrite(led, HIGH);
} while(!unio.read_status(&sr));
Serial.println("Da Vinci EEPROM found...");
Serial.println("Reading the Davinci EEPROM Contents...");
dump_eeprom(0,128);
//dump_eeprom(116,4);
//Read the serial number - added by Matt
byte buf[20];
memset(buf,0,20);
status(unio.read(buf,SN,12));
//Increment the serial number
IncrementSerial(&buf[0], 0, 12);
Serial.println("Press enter to update EEPROM...");
while(!Serial.available());
while(Serial.available()) Serial.read();
Serial.println("Updating EEPROM...");
status(unio.simple_write((const byte *)x,TOTALLEN,4));
status(unio.simple_write((const byte *)x,NEWLEN,4));
status(unio.simple_write((const byte *)et,HEADTEMP,2)); // extruder temp
status(unio.simple_write((const byte *)bt,BEDTEMP,2)); // bed temp
status(unio.simple_write((const byte *)mt,MATERIAL,1)); // Material
//Write the serial number
status(unio.simple_write((const byte *)buf,SN,12)); //Serial Number
status(unio.simple_write((const byte *)x,LEN2,4));
// same block from offset 0 is offset 64 bytes
status(unio.simple_write((const byte *)x,64 + TOTALLEN,4));
status(unio.simple_write((const byte *)x,64 + NEWLEN,4));
status(unio.simple_write((const byte *)et,64 + HEADTEMP,2)); // extruder temp
status(unio.simple_write((const byte *)bt,64 + BEDTEMP,2)); // bed temp
status(unio.simple_write((const byte *)mt,64 + MATERIAL,1)); // Material
//Write the serial number
status(unio.simple_write((const byte *)buf,64 + SN,12)); //Serial Number
status(unio.simple_write((const byte *)x,64 + LEN2,4));
Serial.println("Dumping Content after modification...");
dump_eeprom(0,128);
digitalWrite(led, HIGH); // turn the LED on
delay(10000); // wait for ten seconds
}