forked from shikamaru-96/Visual-Question-Answering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_data.py
115 lines (89 loc) · 2.75 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np
import pandas as pd
import embedding as ebd
import operator
import sys
import scipy as sc
from collections import defaultdict
from nltk import word_tokenize
from keras.preprocessing.sequence import pad_sequences
def int_to_answers():
data_path = 'data/train_qa'
df = pd.read_pickle(data_path)
answers = df[['multiple_choice_answer']].values.tolist()
freq = defaultdict(int)
for answer in answers:
freq[answer[0].lower()] += 1
int_to_answer = sorted(freq.items(),key=operator.itemgetter(1),reverse=True)[0:1000]
int_to_answer = [answer[0] for answer in int_to_answer]
return int_to_answer
top_answers = int_to_answers()
def answers_to_onehot():
top_answers = int_to_answers()
answer_to_onehot = {}
for i, word in enumerate(top_answers):
onehot = np.zeros(1001)
onehot[i] = 1.0
answer_to_onehot[word] = onehot
return answer_to_onehot
answer_to_onehot_dict = answers_to_onehot()
def get_answers_matrix(split):
if split == 'train':
data_path = 'data/train_qa'
elif split == 'val':
data_path = 'data/val_qa'
else:
print('Invalid split!')
sys.exit()
df = pd.read_pickle(data_path)
answers = df[['multiple_choice_answer']].values.tolist()
answer_matrix = np.zeros((len(answers),1001))
default_onehot = np.zeros(1001)
default_onehot[1000] = 1.0
for i, answer in enumerate(answers):
answer_matrix[i] = answer_to_onehot_dict.get(answer[0].lower(),default_onehot)
return answer_matrix
def get_questions_matrix(split):
if split == 'train':
data_path = 'data/train_qa'
elif split == 'val':
data_path = 'data/val_qa'
else:
print('Invalid split!')
sys.exit()
df = pd.read_pickle(data_path)
questions = df[['question']].values.tolist()
word_idx = ebd.load_idx()
seq_list = []
for question in questions:
words = word_tokenize(question[0])
seq = []
for word in words:
seq.append(word_idx.get(word,0))
seq_list.append(seq)
question_matrix = pad_sequences(seq_list)
return question_matrix
def get_coco_features(split):
if split == 'train':
data_path = 'data/train_qa'
elif split == 'val':
data_path = 'data/val_qa'
else:
print('Invalid split!')
sys.exit()
id_map_path = 'coco_features/coco_vgg_IDMap.txt'
features_path = 'coco_features/vgg_feats.mat'
img_labels = pd.read_pickle(data_path)[['image_id']].values.tolist()
img_ids = open(id_map_path).read().splitlines()
features_struct = sc.io.loadmat(features_path)
id_map = {}
for ids in img_ids:
ids_split = ids.split()
id_map[int(ids_split[0])] = int(ids_split[1])
VGGfeatures = features_struct['feats']
nb_dimensions = VGGfeatures.shape[0]
nb_images = len(img_labels)
image_matrix = np.zeros((nb_images,nb_dimensions))
for i in range(nb_images):
image_matrix[i,:] = VGGfeatures[:,id_map[img_labels[i][0]]]
return image_matrix