-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
58 lines (41 loc) · 1.78 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import h5py
import os.path as osp
import numpy as np
import random
from sklearn.model_selection import train_test_split
import torch
from torch.utils import data
__all__ = ['EPIDataSetTrain', 'EPIDataSetTest']
class EPIDataSetTrain(data.Dataset):
def __init__(self, data_tr, label_tr, denselabel_tr):
super(EPIDataSetTrain, self).__init__()
self.data = data_tr
self.label = label_tr
self.denselabel = denselabel_tr
assert len(self.data) == len(self.label) and len(self.data) == len(self.denselabel), \
"the number of sequences and labels must be consistent."
print("The number of data is {}".format(len(self.label)))
def __len__(self):
return len(self.label)
def __getitem__(self, index):
data_one = self.data[index]
label_one = self.label[index]
denselabel_one = self.denselabel[index]
return {"data": data_one, "label": label_one, "denselabel": denselabel_one}
class EPIDataSetTest(data.Dataset):
def __init__(self, data_te, label_te, denselabel_te):
super(EPIDataSetTest, self).__init__()
self.data = data_te
self.label = label_te
self.denselabel = denselabel_te
assert len(self.data) == len(self.label) and len(self.data) == len(self.denselabel), \
"the number of sequences and labels must be consistent."
print("The number of data is {}".format(len(self.label)))
def __len__(self):
return len(self.label)
def __getitem__(self, index):
data_one = self.data[index]
label_one = self.label[index]
denselabel_one = self.denselabel[index]
return {"data": data_one, "label": label_one, "denselabel": denselabel_one}