forked from GoogleCloudPlatform/cloudml-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
415 lines (363 loc) · 14.2 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#/!/usr/bin/env python
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flowers Sample Cloud Runner.
"""
import argparse
import base64
import datetime
import errno
import io
import json
import multiprocessing
import os
import subprocess
import time
import uuid
import apache_beam as beam
from PIL import Image
from tensorflow.python.lib.io import file_io
from tensorflow.python.framework import errors
import trainer.preprocess as preprocess_lib
# Model variables
MODEL_NAME = 'flowers'
TRAINER_NAME = 'trainer-0.1.tar.gz'
METADATA_FILE_NAME = 'metadata.json'
EXPORT_SUBDIRECTORY = 'model'
CONFIG_FILE_NAME = 'config.yaml'
MODULE_NAME = 'trainer.task'
SAMPLE_IMAGE = \
'gs://cloud-ml-data/img/flower_photos/tulips/4520577328_a94c11e806_n.jpg'
# Number of seconds to wait before sending next online prediction after
# an online prediction fails due to model deployment not being complete.
PREDICTION_WAIT_TIME = 30
def process_args():
"""Define arguments and assign default values to the ones that are not set.
Returns:
args: The parsed namespace with defaults assigned to the flags.
"""
parser = argparse.ArgumentParser(
description='Runs Flowers Sample E2E pipeline.')
parser.add_argument(
'--project',
default=None,
help='The project to which the job will be submitted.')
parser.add_argument(
'--cloud', action='store_true',
help='Run preprocessing on the cloud.')
parser.add_argument(
'--train_input_path',
default=None,
help='Input specified as uri to CSV file for the train set')
parser.add_argument(
'--eval_input_path',
default=None,
help='Input specified as uri to CSV file for the eval set.')
parser.add_argument(
'--eval_set_size',
default=50,
help='The size of the eval dataset.')
parser.add_argument(
'--input_dict',
default=None,
help='Input dictionary. Specified as text file uri. '
'Each line of the file stores one label.')
parser.add_argument(
'--deploy_model_name',
default='flowerse2e',
help=('If --cloud is used, the model is deployed with this '
'name. The default is flowerse2e.'))
parser.add_argument(
'--dataflow_sdk_path',
default=None,
help=('Path to Dataflow SDK location. If None, Pip will '
'be used to download the latest published version'))
parser.add_argument(
'--max_deploy_wait_time',
default=600,
help=('Maximum number of seconds to wait after a model is deployed.'))
parser.add_argument(
'--deploy_model_version',
default='v' + uuid.uuid4().hex[:4],
help=('If --cloud is used, the model is deployed with this '
'version. The default is four random characters.'))
parser.add_argument(
'--preprocessed_train_set',
default=None,
help=('If specified, preprocessing steps will be skipped.'
'The provided preprocessed dataset wil be used in this case.'
'If specified, preprocessed_eval_set must also be provided.'))
parser.add_argument(
'--preprocessed_eval_set',
default=None,
help=('If specified, preprocessing steps will be skipped.'
'The provided preprocessed dataset wil be used in this case.'
'If specified, preprocessed_train_set must also be provided.'))
parser.add_argument(
'--pretrained_model_path',
default=None,
help=('If specified, preprocessing and training steps ares skipped.'
'The pretrained model will be deployed in this case.'))
parser.add_argument(
'--sample_image_uri',
default=SAMPLE_IMAGE,
help=('URI for a single Jpeg image to be used for online prediction.'))
parser.add_argument(
'--gcs_bucket',
default=None,
help=('Google Cloud Storage bucket to be used for uploading intermediate '
'data')),
parser.add_argument(
'--output_dir',
default=None,
help=('Google Cloud Storage or Local directory in which '
'to place outputs.'))
parser.add_argument(
'--runtime_version',
default=os.getenv('CLOUDSDK_ML_DEFAULT_RUNTIME_VERSION', '1.0'),
help=('Tensorflow version for model training and prediction.'))
args, _ = parser.parse_known_args()
if args.cloud and not args.project:
args.project = get_cloud_project()
return args
class FlowersE2E(object):
"""The end-2-end pipeline for Flowers Sample."""
def __init__(self, args=None):
if not args:
self.args = process_args()
else:
self.args = args
def preprocess(self):
"""Runs the pre-processing pipeline.
It tiggers two Dataflow pipelines in parallel for train and eval.
Returns:
train_output_prefix: Path prefix for the preprocessed train dataset.
eval_output_prefix: Path prefix for the preprocessed eval dataset.
"""
train_dataset_name = 'train'
eval_dataset_name = 'eval'
# Prepare the environment to run the Dataflow pipeline for preprocessing.
if self.args.dataflow_sdk_path:
dataflow_sdk = self.args.dataflow_sdk_path
if dataflow_sdk.startswith('gs://'):
subprocess.check_call(
['gsutil', 'cp', self.args.dataflow_sdk_path, '.'])
dataflow_sdk = self.args.dataflow_sdk_path.split('/')[-1]
else:
dataflow_sdk = None
subprocess.check_call(['python', 'setup.py', 'sdist', '--format=gztar'])
trainer_uri = os.path.join(self.args.output_dir, TRAINER_NAME)
subprocess.check_call(
['gsutil', '-q', 'cp', os.path.join('dist', TRAINER_NAME), trainer_uri])
thread_pool = multiprocessing.pool.ThreadPool(2)
train_output_prefix = os.path.join(self.args.output_dir, 'preprocessed',
train_dataset_name)
eval_output_prefix = os.path.join(self.args.output_dir, 'preprocessed',
eval_dataset_name)
train_args = (train_dataset_name, self.args.train_input_path,
train_output_prefix, dataflow_sdk, trainer_uri)
eval_args = (eval_dataset_name, self.args.eval_input_path,
eval_output_prefix, dataflow_sdk, trainer_uri)
# make a pool to run two pipelines in parallel.
pipeline_pool = [thread_pool.apply_async(self.run_pipeline, train_args),
thread_pool.apply_async(self.run_pipeline, eval_args)]
_ = [res.get() for res in pipeline_pool]
return train_output_prefix, eval_output_prefix
def run_pipeline(self, dataset_name, input_csv, output_prefix,
dataflow_sdk_location, trainer_uri):
"""Runs a Dataflow pipeline to preprocess the given dataset.
Args:
dataset_name: The name of the dataset ('eval' or 'train').
input_csv: Path to the input CSV file which contains an image-URI with
its labels in each line.
output_prefix: Output prefix to write results to.
dataflow_sdk_location: path to Dataflow SDK package.
trainer_uri: Path to the Flower's trainer package.
"""
job_name = ('cloud-ml-sample-flowers-' +
datetime.datetime.now().strftime('%Y%m%d%H%M%S') +
'-' + dataset_name)
options = {
'staging_location':
os.path.join(self.args.output_dir, 'tmp', dataset_name, 'staging'),
'temp_location':
os.path.join(self.args.output_dir, 'tmp', dataset_name),
'project':
self.args.project,
'job_name': job_name,
'extra_packages': [trainer_uri],
'save_main_session':
True,
}
if dataflow_sdk_location:
options['sdk_location'] = dataflow_sdk_location
pipeline_name = 'DataflowRunner' if self.args.cloud else 'DirectRunner'
opts = beam.pipeline.PipelineOptions(flags=[], **options)
args = argparse.Namespace(**vars(self.args))
vars(args)['input_path'] = input_csv
vars(args)['input_dict'] = self.args.input_dict
vars(args)['output_path'] = output_prefix
# execute the pipeline
with beam.Pipeline(pipeline_name, options=opts) as pipeline:
preprocess_lib.configure_pipeline(pipeline, args)
def train(self, train_file_path, eval_file_path):
"""Train a model using the eval and train datasets.
Args:
train_file_path: Path to the train dataset.
eval_file_path: Path to the eval dataset.
"""
trainer_args = [
'--output_path', self.args.output_dir,
'--eval_data_paths', eval_file_path,
'--eval_set_size', str(self.args.eval_set_size),
'--train_data_paths', train_file_path
]
if self.args.cloud:
job_name = 'flowers_model' + datetime.datetime.now().strftime(
'_%y%m%d_%H%M%S')
command = [
'gcloud', 'ml-engine', 'jobs', 'submit', 'training', job_name,
'--stream-logs',
'--module-name', MODULE_NAME,
'--staging-bucket', self.args.gcs_bucket,
'--region', 'us-central1',
'--project', self.args.project,
'--package-path', 'trainer',
'--runtime-version', self.args.runtime_version,
'--'
] + trainer_args
else:
command = [
'gcloud', 'ml-engine', 'local', 'train',
'--module-name', MODULE_NAME,
'--package-path', 'trainer',
'--',
] + trainer_args
subprocess.check_call(command)
def deploy_model(self, model_path):
"""Deploys the trained model.
Args:
model_path: Path to the trained model.
"""
create_model_cmd = [
'gcloud', 'ml-engine', 'models', 'create', self.args.deploy_model_name,
'--regions', 'us-central1',
'--project', self.args.project,
]
print create_model_cmd
subprocess.check_call(create_model_cmd)
submit = [
'gcloud', 'ml-engine', 'versions', 'create',
self.args.deploy_model_version,
'--model', self.args.deploy_model_name,
'--origin', model_path,
'--project', self.args.project,
'--runtime-version', self.args.runtime_version,
]
if not model_path.startswith('gs://'):
submit.extend(['--staging-bucket', self.args.gcs_bucket])
print submit
subprocess.check_call(submit)
self.adaptive_wait()
print 'Deployed %s version: %s' % (self.args.deploy_model_name,
self.args.deploy_model_version)
def adaptive_wait(self):
"""Waits for a model to be fully deployed.
It keeps sending online prediction requests until a prediction is
successful or maximum wait time is reached. It sleeps between requests.
"""
start_time = datetime.datetime.utcnow()
elapsed_time = 0
while elapsed_time < self.args.max_deploy_wait_time:
try:
self.predict(self.args.sample_image_uri)
return
except Exception as e:
time.sleep(PREDICTION_WAIT_TIME)
elapsed_time = (datetime.datetime.utcnow() - start_time).total_seconds()
continue
def predict(self, image_uri):
"""Sends a predict request for the deployed model for the given image.
Args:
image_uri: The input image URI.
"""
output_json = 'request.json'
self.make_request_json(image_uri, output_json)
cmd = [
'gcloud', 'ml-engine', 'predict',
'--model', self.args.deploy_model_name,
'--version', self.args.deploy_model_version,
'--json-instances', 'request.json',
'--project', self.args.project
]
subprocess.check_call(cmd)
def make_request_json(self, uri, output_json):
"""Produces a JSON request suitable to send to CloudML Prediction API.
Args:
uri: The input image URI.
output_json: File handle of the output json where request will be written.
"""
def _open_file_read_binary(uri):
try:
return file_io.FileIO(uri, mode='rb')
except errors.InvalidArgumentError:
return file_io.FileIO(uri, mode='r')
with open(output_json, 'w') as outf:
with _open_file_read_binary(uri) as f:
image_bytes = f.read()
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
image = image.resize((299, 299), Image.BILINEAR)
resized_image = io.BytesIO()
image.save(resized_image, format='JPEG')
encoded_image = base64.b64encode(resized_image.getvalue())
row = json.dumps({'key': uri, 'image_bytes': {'b64': encoded_image}})
outf.write(row)
outf.write('\n')
def run(self):
"""Runs the pipeline."""
model_path = self.args.pretrained_model_path
if not model_path:
train_prefix, eval_prefix = (self.args.preprocessed_train_set,
self.args.preprocessed_eval_set)
if not train_prefix or not eval_prefix:
train_prefix, eval_prefix = self.preprocess()
self.train(train_prefix + '*', eval_prefix + '*')
model_path = os.path.join(self.args.output_dir, EXPORT_SUBDIRECTORY)
self.deploy_model(model_path)
def get_cloud_project():
cmd = [
'gcloud', '-q', 'config', 'list', 'project',
'--format=value(core.project)'
]
with open(os.devnull, 'w') as dev_null:
try:
res = subprocess.check_output(cmd, stderr=dev_null).strip()
if not res:
raise Exception('--cloud specified but no Google Cloud Platform '
'project found.\n'
'Please specify your project name with the --project '
'flag or set a default project: '
'gcloud config set project YOUR_PROJECT_NAME')
return res
except OSError as e:
if e.errno == errno.ENOENT:
raise Exception('gcloud is not installed. The Google Cloud SDK is '
'necessary to communicate with the Cloud ML service. '
'Please install and set up gcloud.')
raise
def main():
pipeline = FlowersE2E()
pipeline.run()
if __name__ == '__main__':
main()