You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I'm trying to train a model with 5 conv layers from AlexNet model. And I followed src/fast_dbox_config.py, using a yaml file to setting DEDUP_BOXES=0.0625(1/16). Other settings are using default config. Using pretrained model imagenet_models/CaffeNet.v2.caffemodel for 5 conv layers.
But the the loss cannot converge.
I'm trying to train a model with 5 conv layers from AlexNet model. And I followed src/fast_dbox_config.py, using a yaml file to setting DEDUP_BOXES=0.0625(1/16). Other settings are using default config. Using pretrained model imagenet_models/CaffeNet.v2.caffemodel for 5 conv layers.
But the the loss cannot converge.
Here is my train prototxt
name: "CaffeNet"
#COCO dataset needs to change the bbox regression layer
input: "data"
input_shape {
dim: 1
dim: 3
dim: 140
dim: 140
}
input: "rois"
input_shape {
dim: 1 # to be changed on-the-fly to num ROIs
dim: 5 # [batch ind, x1, y1, x2, y2] zero-based indexing
dim: 1
dim: 1
}
input: "labels"
input_shape {
dim: 1 # to be changed on-the-fly to match num ROIs
dim: 1
dim: 1
dim: 1
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "roi_pool2_0"
type: "ROIPooling"
bottom: "conv5"
bottom: "rois"
top: "pool2_0"
roi_pooling_param {
pooled_w: 6
pooled_h: 6
spatial_scale: 0.125 # 1/16
}
}
layer {
name: "fc3"
type: "InnerProduct"
bottom: "pool2_0"
top: "fc3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1024
}
}
layer {
name: "relu3_0"
type: "ReLU"
bottom: "fc3"
top: "fc3"
}
layer {
name: "drop3"
type: "Dropout"
bottom: "fc3"
top: "fc3"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "cls_score"
type: "InnerProduct"
bottom: "fc3"
top: "cls_score"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "loss_cls"
type: "SoftmaxWithLoss"
bottom: "cls_score"
bottom: "labels"
top: "loss_cls"
loss_weight: 1
}
The text was updated successfully, but these errors were encountered: