-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathpredict.py
135 lines (100 loc) · 3.87 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
import sys
from argparse import ArgumentParser
import tensorflow as tf
import keras.backend as K
from keras.preprocessing.image import ImageDataGenerator
#custom
import model.model as model
print('import end')
def parse_args():
parser = ArgumentParser(description='Predict')
parser.add_argument(
'-dataroot', '--dataroot',
type=str, default='./testImg',
help='root of the image, if data type is npy, set datatype as npy'
)
parser.add_argument(
'-datatype', '--datatype',
type=str, default=['jpg','tif','png'],
help='type of the image, if == npy, will load dataroot'
)
parser.add_argument(
'-predictpath', '--predictpath',
type=str, default='./predictImg',
help='root of the output'
)
parser.add_argument(
'-batch_size', '--batch_size',
type=int, default=3,
help='batch_size'
)
return parser.parse_args()
def progress(count, total, status=''):
bar_len = 60
filled_len = int(round(bar_len * count / float(total)))
percents = round(100.0 * count / float(total), 1)
bar = '|' * filled_len + '-' * (bar_len - filled_len)
sys.stdout.write('[%s] %s%s ...%s\r' % (bar, percents, '%', status))
if count != total:
sys.stdout.flush()
else:
print()
def generate_data_generator(datagenerator, X,BATCHSIZE):
genX1 = datagenerator.flow(X,batch_size = BATCHSIZE,shuffle=False)
count = 0
while True:
Xi1 = genX1.next()
# /255 And Change to RGB
Xi1 = Xi1/255
Xi1 = Xi1[:,:,:,::-1]
yield [Xi1]
if __name__== '__main__':
args = parse_args()
#read test data
selectNames = []
if args.datatype == 'npy':
print('Load from npy:',args.dataroot)
data = np.load(args.dataroot)
else:
data=[]
print('Read img from:' , args.dataroot)
fnames=os.listdir(args.dataroot)
print('Len of the file:',len(fnames))
count = 1
for f in fnames:
progress(count,len(fnames),'Loading data...')
count+=1
if f.split('.')[-1] in args.datatype:
tmp=cv2.imread(args.dataroot+'/'+f)
selectNames.append(f)
if tmp.shape[1]<tmp.shape[0]:
tmp=np.rot90(tmp)
if tmp.shape[0]!=480 or tmp.shape[1]!=640:
tmp=cv2.resize(tmp, (640, 480), interpolation=cv2.INTER_CUBIC)
data.append(tmp)
data=np.array(data)
print(data.shape,'data shape')
if not os.path.exists(args.predictpath):
os.mkdir(args.predictpath)
if not os.path.exists(args.predictpath):
os.mkdir(args.predictpath)
#BUILD COMBINE MODEL
print('----------Build Model----------')
modelRecoverCombine = model.build_combine_model()
print('LogPath:',args.predictpath)
val_data_gen = ImageDataGenerator(featurewise_center=False,
featurewise_std_normalization=False)
pred=modelRecoverCombine.predict_generator(generate_data_generator(val_data_gen,data,args.batch_size),steps = data.shape[0]/args.batch_size,verbose=1)
print(pred.shape,'Result Shape')
print('Save Output')
for i in range(pred.shape[0]):
progress(i+1,pred.shape[0],'Saving output...')
pred[i]=np.clip(pred[i],0.0,1.0)
if args.datatype == 'npy':
cv2.imwrite(args.predictpath+'/'+str(i)+'.jpg', (pred[i]*255).astype(np.uint8)[:,:,::-1])
else:
cv2.imwrite(args.predictpath+'/'+os.path.splitext(selectNames[i])[0]+'.jpg',(pred[i]*255).astype(np.uint8)[:,:,::-1])