-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrankedavg.py
49 lines (38 loc) · 1.62 KB
/
rankedavg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import sys
from collections import defaultdict
def rank_avg(files, outfile):
with open(outfile, 'w') as out:
ranks = defaultdict(list)
for i, f in enumerate(files):
file_ranks = []
lines = open(f).readlines()
lines = [lines[0]] + sorted(lines[1:])
for e, line in enumerate(lines):
if e > 0:
r = line.strip().split(",")
file_ranks.append((float(r[1]), e, r[0]))
for rank, item in enumerate(sorted(file_ranks)):
ranks[(item[1],item[2])].append(rank)
average_ranks = []
for k in sorted(ranks):
average_ranks.append((sum(ranks[k])/len(ranks[k]), k))
ranked_ranks = []
for rank, k in enumerate(sorted(average_ranks)):
ranked_ranks.append((k[1][0], k[1][1], rank/(len(average_ranks) - 1)))
out.write('Id,Action\n')
for k in sorted(ranked_ranks):
out.write('{},{}\n'.format(k[1], k[2]))
def main():
if len(sys.argv) != 2:
print('Usage: python rankavg.py OUTFILE\nDo not include the \'.csv\' extension.')
exit(1)
# These files are the submissions that we are throwing together in the ensemble.
files = [
'reference-code/starter_submission.csv', # Logistic Regression from Paul Duan.
'output/xgb_155trees_colsampletree.5_learningrate0.3_maxdepth8_.86928.csv', # XGBoost
'output/rf_1ktrees_entropy_auto_bootstrapped_.86757.csv', # Random Forest
]
outfile = 'output/{}.csv'.format(sys.argv[1])
rank_avg(files, outfile)
if __name__ == '__main__':
main()