-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathweights.py
373 lines (316 loc) · 14 KB
/
weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import os
import copy
import pickle
import tqdm
import argparse
import einops
import torch
import numpy as np
import pandas as pd
from transformer_lens import HookedTransformer
from utils import timestamp, adjust_precision, vector_histogram, vector_moments
def load_composition_scores():
raise NotImplementedError
def compute_neuron_composition(model, layer, zero_diag=False):
"""
Takes in a model and a layer, and dot projection of """
W_in = einops.rearrange(model.W_in, 'l d n -> l n d')
W_out = model.W_out
W_in /= torch.norm(W_in, dim=-1, keepdim=True)
W_out /= torch.norm(W_out, dim=-1, keepdim=True)
in_in_cos = einops.einsum(
W_in, W_in[layer, :, :], f'l n d, m d -> m l n')
in_out_cos = einops.einsum(
W_out, W_in[layer, :, :], f'l n d, m d -> m l n')
out_in_cos = einops.einsum(
W_in, W_out[layer, :, :], f'l n d, m d -> m l n')
out_out_cos = einops.einsum(
W_out, W_out[layer, :, :], f'l n d, m d -> m l n')
if zero_diag:
diag_ix = torch.arange(in_in_cos.shape[-1])
in_in_cos[diag_ix, layer, diag_ix] = 0
in_out_cos[diag_ix, layer, diag_ix] = 0
out_in_cos[diag_ix, layer, diag_ix] = 0
out_out_cos[diag_ix, layer, diag_ix] = 0
return in_in_cos, in_out_cos, out_in_cos, out_out_cos
def compute_attention_composition(model, layer):
W_in = einops.rearrange(model.W_in[layer], 'd n -> n d')
W_in /= torch.norm(W_in, dim=-1, keepdim=True)
W_out = model.W_out[layer]
W_out /= torch.norm(W_out, dim=-1, keepdim=True)
k_comps, q_comps, v_comps, o_comps = [], [], [], []
for attn_layer in range(model.cfg.n_layers):
W_QK = model.QK[attn_layer].T.AB
W_QK /= torch.norm(W_QK, dim=(1, 2), keepdim=True)
k_comp = einops.einsum(W_QK, W_out, 'h q d, n d -> n h q').norm(dim=-1)
q_comp = einops.einsum(W_QK, W_out, 'h d k, n d -> n h k').norm(dim=-1)
W_OV = model.OV[attn_layer].T.AB
W_OV /= torch.norm(W_OV, dim=(1, 2), keepdim=True)
v_comp = einops.einsum(W_OV, W_out, 'h o d, n d -> n h o').norm(dim=-1)
o_comp = einops.einsum(W_OV, W_in, 'h d v, n d -> n h v').norm(dim=-1)
k_comps.append(k_comp)
q_comps.append(q_comp)
v_comps.append(v_comp)
o_comps.append(o_comp)
# return is d_mlp x n_layers x n_heads
k_comps = torch.stack(k_comps, dim=1)
q_comps = torch.stack(q_comps, dim=1)
v_comps = torch.stack(v_comps, dim=1)
o_comps = torch.stack(o_comps, dim=1)
return k_comps, q_comps, v_comps, o_comps
def compute_vocab_composition(model, layer):
W_in = einops.rearrange(model.W_in[layer, :, :], 'd n -> n d')
W_out = model.W_out[layer, :, :]
W_in /= torch.norm(W_in, dim=-1, keepdim=True)
W_out /= torch.norm(W_out, dim=-1, keepdim=True)
# W_E is (d_vocab, d_model), W_U is (d_model, d_vocab)
W_E = model.W_E / torch.norm(model.W_E, dim=-1, keepdim=True)
W_U = model.W_U / torch.norm(model.W_U, dim=0, keepdim=True)
in_E_cos = einops.einsum(W_E, W_in, 'v d, n d -> n v')
in_U_cos = einops.einsum(W_U, W_in, 'd v, n d -> n v')
out_E_cos = einops.einsum(W_E, W_out, 'v d, n d -> n v')
out_U_cos = einops.einsum(W_U, W_out, 'd v, n d -> n v')
return in_E_cos, in_U_cos, out_E_cos, out_U_cos
def compute_neuron_statistics(model):
W_in = einops.rearrange(model.W_in, 'l d n -> l n d')
W_out = model.W_out
layers, d_mlp, d_model = W_in.shape
W_in_norms = torch.norm(W_in, dim=-1)
W_out_norms = torch.norm(W_out, dim=-1)
# Calculate cosine similarity: dot(A, B) / (||A|| * ||B||)
dot_product = (W_in * W_out).sum(dim=-1)
cos_sim = dot_product / (W_in_norms * W_out_norms)
index = pd.MultiIndex.from_product(
[range(layers), range(4*d_model)],
names=["layer", "neuron_ix"]
)
stat_df = pd.DataFrame({
"input_weight_norm": W_in_norms.detach().numpy().flatten(),
"input_bias": model.b_in.detach().numpy().flatten(),
"output_weight_norm": W_out_norms.detach().numpy().flatten(),
# note output bias is not d_mlp, but d_model
"in_out_sim": cos_sim.detach().numpy().flatten()
}, index=index)
return stat_df
def run_weight_summary(args, model):
save_path = os.path.join(
args.save_path,
args.model,
'weights'
)
os.makedirs(save_path, exist_ok=True)
stat_df = compute_neuron_statistics(model)
stat_df.to_csv(os.path.join(save_path, 'neuron_stats.csv'))
# attention composition summary
k_comps, q_comps, v_comps, o_comps = [], [], [], []
for layer in tqdm.tqdm(range(model.cfg.n_layers)):
k_comp, q_comp, v_comp, o_comp = compute_attention_composition(
model, layer)
k_comps.append(k_comp)
q_comps.append(q_comp)
v_comps.append(v_comp)
o_comps.append(o_comp)
k_comps = torch.stack(k_comps, dim=0)
q_comps = torch.stack(q_comps, dim=0)
v_comps = torch.stack(v_comps, dim=0)
o_comps = torch.stack(o_comps, dim=0)
torch.save(k_comps.to(torch.float16),
os.path.join(save_path, 'k_comps.pt'))
torch.save(q_comps.to(torch.float16),
os.path.join(save_path, 'q_comps.pt'))
torch.save(v_comps.to(torch.float16),
os.path.join(save_path, 'v_comps.pt'))
torch.save(o_comps.to(torch.float16),
os.path.join(save_path, 'o_comps.pt'))
print('finished attention composition summary')
# vocab composition summary
bin_edges = torch.linspace(-1, 1, 100)
vocab_comp_data = {
'top_vocab_value': [],
'top_vocab_ix': [],
'bottom_vocab_value': [],
'bottom_vocab_ix': [],
'comp_hist': [],
'comp_mean': [],
'comp_var': [],
'comp_skew': [],
'comp_kurt': []
}
vocab_composition_types = ['E_in', 'U_in', 'E_out', 'U_out']
vocab_comp_dict = {
k: copy.deepcopy(vocab_comp_data) for k in vocab_composition_types
}
for layer in tqdm.tqdm(range(model.cfg.n_layers)):
layer_comps = compute_vocab_composition(model, layer)
for comp_type, comp_score in zip(vocab_composition_types, layer_comps):
comp_hist = vector_histogram(comp_score, bin_edges)
vocab_comp_dict[comp_type]['comp_hist'].append(comp_hist)
top, top_ix = torch.topk(comp_score, 100, dim=1, largest=True)
vocab_comp_dict[comp_type]['top_vocab_value'].append(top)
vocab_comp_dict[comp_type]['top_vocab_ix'].append(top_ix)
bottom, bottom_ix = torch.topk(
comp_score, 100, dim=1, largest=False)
vocab_comp_dict[comp_type]['bottom_vocab_value'].append(bottom)
vocab_comp_dict[comp_type]['bottom_vocab_ix'].append(bottom_ix)
mean, var, skew, kurt = vector_moments(comp_score)
vocab_comp_dict[comp_type]['comp_mean'].append(mean)
vocab_comp_dict[comp_type]['comp_var'].append(var)
vocab_comp_dict[comp_type]['comp_skew'].append(skew)
vocab_comp_dict[comp_type]['comp_kurt'].append(kurt)
vocab_comp_dict = {
comp_type: {data_type: torch.stack(data_dict, dim=0)
for data_type, data_dict in comp_type_dict.items()}
for comp_type, comp_type_dict in vocab_comp_dict.items()
}
torch.save(vocab_comp_dict, os.path.join(save_path, 'vocab_comps.pt'))
print('finished vocab composition summary')
# neuron composition summary
neuron_composition_types = ['in_in', 'in_out', 'out_in', 'out_out']
neuron_comp_data = {
'top_neuron_value': [],
'top_neuron_ix': [],
'bottom_neuron_value': [],
'bottom_neuron_ix': [],
'comp_hist': [],
'comp_mean': [],
'comp_var': [],
'comp_skew': [],
'comp_kurt': []
}
neuron_comp_dict = {
k: copy.deepcopy(neuron_comp_data) for k in neuron_composition_types
}
for layer in tqdm.tqdm(range(model.cfg.n_layers)):
layer_comps = compute_neuron_composition(model, layer, zero_diag=True)
for comp_type, comp_score in zip(neuron_composition_types, layer_comps):
comp_score = einops.rearrange(comp_score, 'm l n -> m (l n)')
comp_hist = vector_histogram(comp_score, bin_edges)
neuron_comp_dict[comp_type]['comp_hist'].append(comp_hist)
top, top_ix = torch.topk(comp_score, 20, dim=1, largest=True)
neuron_comp_dict[comp_type]['top_neuron_value'].append(top)
neuron_comp_dict[comp_type]['top_neuron_ix'].append(top_ix)
bottom, bottom_ix = torch.topk(
comp_score, 20, dim=1, largest=False)
neuron_comp_dict[comp_type]['bottom_neuron_value'].append(bottom)
neuron_comp_dict[comp_type]['bottom_neuron_ix'].append(bottom_ix)
mean, var, skew, kurt = vector_moments(comp_score)
neuron_comp_dict[comp_type]['comp_mean'].append(mean)
neuron_comp_dict[comp_type]['comp_var'].append(var)
neuron_comp_dict[comp_type]['comp_skew'].append(skew)
neuron_comp_dict[comp_type]['comp_kurt'].append(kurt)
neuron_comp_dict = {
comp_type: {data_type: torch.stack(data_dict, dim=0)
for data_type, data_dict in comp_type_dict.items()}
for comp_type, comp_type_dict in neuron_comp_dict.items()
}
torch.save(neuron_comp_dict, os.path.join(save_path, 'neuron_comps.pt'))
print('finished neuron composition summary')
def run_full_weight_analysis(model, causal_only=False, save_precision=8, save_path='results/weights'):
save_path = os.path.join(save_path, model.cfg.model_name)
os.makedirs(save_path, exist_ok=True)
print(f'{timestamp()} starting analysis')
stat_df = compute_neuron_statistics(model)
stat_df.to_csv(os.path.join(save_path, 'neuron_stats.csv'))
print(f'{timestamp()} saved neuron df')
neuron_cos_path = os.path.join(save_path, 'neuron_cosine')
attn_cos_path = os.path.join(save_path, 'attn_cosine')
vocab_cos_path = os.path.join(save_path, 'vocab_cosine')
os.makedirs(neuron_cos_path, exist_ok=True)
os.makedirs(attn_cos_path, exist_ok=True)
os.makedirs(vocab_cos_path, exist_ok=True)
for layer in range(model.cfg.n_layers):
# neuron composition
in_in_cos, in_out_cos, out_out_cos = compute_neuron_composition(
model, layer)
torch.save(
adjust_precision(in_in_cos, save_precision,
per_channel=False, cos_sim=True),
os.path.join(neuron_cos_path, f'in_in_cos_{layer}.pt')
)
torch.save(
adjust_precision(in_out_cos, save_precision,
per_channel=False, cos_sim=True),
os.path.join(neuron_cos_path, f'in_out_cos_{layer}.pt')
)
torch.save(
adjust_precision(out_out_cos, save_precision,
per_channel=False, cos_sim=True),
os.path.join(neuron_cos_path, f'out_out_cos_{layer}.pt')
)
del in_in_cos, in_out_cos, out_out_cos
print(f'{timestamp()} saved neuron cosines for layer {layer}')
# vocab composition
in_E_cos, in_U_cos, out_E_cos, out_U_cos = compute_vocab_composition(
model, layer)
torch.save(
adjust_precision(in_E_cos, save_precision,
per_channel=False, cos_sim=True),
os.path.join(vocab_cos_path, f'in_E_cos_{layer}.pt')
)
torch.save(
adjust_precision(in_U_cos, save_precision,
per_channel=False, cos_sim=True),
os.path.join(vocab_cos_path, f'in_U_cos_{layer}.pt')
)
torch.save(
adjust_precision(out_E_cos, save_precision,
per_channel=False, cos_sim=True),
os.path.join(vocab_cos_path, f'out_E_cos_{layer}.pt')
)
torch.save(
adjust_precision(out_U_cos, save_precision,
per_channel=False, cos_sim=True),
os.path.join(vocab_cos_path, f'out_U_cos_{layer}.pt')
)
del in_E_cos, in_U_cos, out_E_cos, out_U_cos
print(f'{timestamp()} saved vocab cosines for layer {layer}')
# attention composition
k_comps, q_comps, v_comps, o_comps = compute_attention_composition(
model, layer)
torch.save(
adjust_precision(o_comps, save_precision),
os.path.join(attn_cos_path, f'o_comp_{layer}.pt')
)
torch.save(
adjust_precision(v_comps, save_precision),
os.path.join(attn_cos_path, f'v_comp_{layer}.pt')
)
torch.save(
adjust_precision(q_comps, save_precision),
os.path.join(attn_cos_path, f'q_comp_{layer}.pt')
)
torch.save(
adjust_precision(k_comps, save_precision),
os.path.join(attn_cos_path, f'k_comp_{layer}.pt')
)
del o_comps, v_comps, q_comps, k_comps
print(f'{timestamp()} saved attention cosines for layer {layer}')
if __name__ == '__main__':
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--model', default='pythia-70m',
help='Name of model from TransformerLens')
parser.add_argument(
'--causal_only', action='store_true', default=False)
parser.add_argument(
'--save_precision', type=int, default=8, choices=[8, 16, 32],
help='Number of bits to use for saving cosine similarities')
parser.add_argument(
'--save_path', default='summary_data')
parser.add_argument(
'--compute_full_stats', action='store_true', default=False)
args = parser.parse_args()
print(f'{timestamp()} loading model')
torch.set_grad_enabled(False)
model = HookedTransformer.from_pretrained(args.model, device='cpu')
if args.compute_full_stats:
# not recently tested
run_full_weight_analysis(
model,
causal_only=args.causal_only,
save_precision=args.save_precision,
save_path=args.save_path
)
else:
run_weight_summary(args, model)