-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path80. (1856) Maximum Subarray Min-Product - Leetcode.cpp
55 lines (51 loc) · 1.81 KB
/
80. (1856) Maximum Subarray Min-Product - Leetcode.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/*
The min-product of an array is equal to the minimum value in the array multiplied by the array's sum.
For example, the array [3,2,5] (minimum value is 2) has a min-product of 2 * (3+2+5) = 2 * 10 = 20.
Given an array of integers nums, return the maximum min-product of any non-empty subarray of nums. Since the answer may be large, return it modulo 109 + 7.
Note that the min-product should be maximized before performing the modulo operation. Testcases are generated such that the maximum min-product without modulo will fit in a 64-bit signed integer.
A subarray is a contiguous part of an array.
*/
class Solution {
public:
int maxSumMinProduct(vector<int>& nums) {
vector<long long>prefix(nums.size()+1);
prefix[0]=0;
for(int i=1;i<nums.size()+1;i++)
{
prefix[i]=prefix[i-1]+nums[i-1];
}
vector<int>left(nums.size());
vector<int>right(nums.size());
//leftmin
stack<int>st;
for(int i=0;i<nums.size();i++)
{
while(!st.empty() && nums[i]<=nums[st.top()]) st.pop();
if(st.empty())
left[i]=-1;
else
left[i]=st.top();
st.push(i);
}
while(!st.empty()) st.pop();
for(int i=nums.size()-1;i>=0;i--)
{
while(!st.empty() && nums[i]<=nums[st.top()]) st.pop();
if(st.empty())
right[i]=nums.size();
else
right[i]=st.top();
st.push(i);
}
long long ans=0;
for(int i=0;i<nums.size();i++)
{
int l=left[i];
int r=right[i];
long long sum = (prefix[r]-prefix[l+1]);
long long pro = sum * nums[i];
ans = max(pro,ans);
}
return (int)(ans%1000000007);
}
};