forked from timovanopstal/sambal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcurve.py
407 lines (328 loc) · 13.8 KB
/
curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
from nutils import function, numeric, _, debug
import numpy
_sqr = lambda x: numeric.contract_fast( x, x, 1 ) # _sqr(x) = norm2(x)**2
pi = numpy.pi
class Curve( object ):
def __init__( self, orig=[0,0], angle=0, segments=[] ):
self.current = numpy.array( orig, dtype=float )
assert self.current.shape == (2,)
self.angle = angle
self.segments = list(segments)
self.cumlen = [0]
for segment in segments:
self.cumlen.append( self.cumlen[-1] + segment.length )
@property
def rot( self ):
return rotmat( self.angle )
def __add__( self, other ):
assert isinstance(other,Curve), 'Cannot add non curve objects'
segments = list( self.segments )
for segment in other.segments:
newsegment = segment.transform( shift=self.current, angle=self.angle )
segments.append( newsegment )
return Curve( orig=self.current+numpy.dot( self.rot, other.current ), angle=self.angle+other.angle, segments=segments )
@property
def length( self ):
return self.cumlen[-1]
def grow( self, length=None, angle=None, curvature=0, flag=False ):
if length is None:
assert angle is not None
assert curvature != 0
length = abs(angle / curvature)
else:
assert angle is None
if curvature == 0:
tang = numpy.array([ numpy.cos(self.angle), numpy.sin(self.angle) ])
xy0 = self.current
xy1 = xy0 + length * tang
segment = Line( xy0=xy0, xy1=xy1 )
else:
radius = 1./curvature
norm = numpy.array([ numpy.sin(self.angle), -numpy.cos(self.angle) ])
origin = self.current + norm / curvature
phi0 = self.angle + .5 * numpy.pi
phi1 = phi0 - length * curvature
self.angle = phi1 - .5 * numpy.pi
segment = Arc( origin=origin, radius=radius, phi0=phi0, phi1=phi1 )
segment.flag = flag
self.current = segment.xy1
self.cumlen.append( self.cumlen[-1] + segment.length )
self.segments.append( segment )
def move( self, length=None, absolute=None, angle=None, absangle=None ):
if absolute is not None:
assert length==None, 'length is not None, you cannot specify a length AND absolute coordinate'
self.current = numpy.array( absolute )
elif length is not None:
assert absolute==None, 'absolute is not None, you cannot specify a length AND absolute coordinate'
self.current = self.current + length*numpy.array( [numpy.cos(self.angle), numpy.sin(self.angle)] )
if angle is not None:
assert absangle==None, 'absangle is not None, you cannot specify a relative AND absolute angle'
self.angle += angle
elif absangle is not None:
assert angle==None, 'angle is not None, you cannot specify a absolute AND relative angle'
self.angle = absangle
def scale( self, factor ):
segments = [segment.scale( factor ) for segment in self.segments ]
return Curve( orig=self.current*factor, angle=self.angle, segments=segments )
def sample( self, spacing ):
return numpy.concatenate( [ segment.getcoords( numpy.linspace(0,1,segment.length/spacing, endpoint=False) ) for segment in self.segments ], axis=0 )
def findclosest( self, xy ):
assert self.segments
for i, segment in enumerate( self.segments ):
alpha = numpy.minimum( 1-1e-14, numpy.maximum( 0, segment.findclosest( xy ) ) )
dist2 = _sqr( segment.getcoords(alpha) - xy )
if i == 0:
dist2s = dist2
alphas = alpha
else:
smaller = dist2<dist2s#function.less(dist2, dist2s)
dist2s[smaller] = dist2[smaller]
alphas[smaller] = alpha[smaller] + i
return alphas
# @staticmethod
def lump_integers( self, cumalpha ):#integers ):
integers = numpy.minimum( cumalpha.astype(int), len(self.segments)-1 )
enum_integers = numpy.array([ numpy.arange( len(integers) ), integers ]).T
while enum_integers.size:
i = enum_integers[0,1]
selected = ( enum_integers[:,1] == i )
yield i, enum_integers[selected,0]
enum_integers = enum_integers[~selected]
def getcoords( self, cumalpha ):
coords = numpy.empty( [ len(cumalpha), 2 ] )
for i, index in self.lump_integers( cumalpha ):
coords[index] = self.segments[i].getcoords( cumalpha[index]-i )
return coords
def tangent( self, cumalpha ):
tangent = numpy.empty( [ len(cumalpha), 2 ] )
for i, index in self.lump_integers( cumalpha ):
tangent[index] = self.segments[i].tangent( cumalpha[index]-i )
return tangent
def pathlen( self, cumalpha ):
lenghts = numpy.empty( len(cumalpha) )
for i, index in self.lump_integers( cumalpha ):
lenghts[index] = self.cumlen[i] + (cumalpha[index]-i) * self.segments[i].length
return lenghts
def pathflag( self, cumalpha ):
flags = numpy.empty( len(cumalpha) )
for i, index in self.lump_integers( cumalpha ):
flags[index] = self.segments[i].flag*numpy.ones_like(self.getcoords(cumalpha))
return flags
class Segment( object ):
def __init__( self, xy0, xy1, length, flag=False ):
self.xy0 = xy0
self.xy1 = xy1
self.length = length
self.flag = flag
def rotmat( angle ):
sin = numpy.sin( angle )
cos = numpy.cos( angle )
return numpy.array([[ cos,sin ],[-sin,cos]])
def rotate( x, angle ):
return numpy.dot( rotmat(angle), x )
class Line( Segment ):
def __init__( self, xy0, xy1, flag=False ):
Segment.__init__( self, xy0, xy1, numpy.linalg.norm(xy0-xy1), flag=flag )
self.type = 'Line'
def getcoords( self, alpha ):
return self.xy0 + alpha[...,_] * ( self.xy1 - self.xy0 )
def findclosest( self, xy ):
R1sqr = _sqr( xy - self.xy0 )
R2sqr = _sqr( xy - self.xy1 )
return .5 - ( R2sqr - R1sqr ) / ( 2 * self.length**2 )
def tangent( self, alpha ):
return ( ( self.xy1 - self.xy0 )/ numpy.linalg.norm( self.xy1-self.xy0 ) )[_,:]
def transform( self, shift, angle ):
xy0 = rotate( self.xy0, angle ) + shift
xy1 = rotate( self.xy1, angle ) + shift
return Line( xy0=xy0, xy1=xy1 )
def scale( self, factor ):
return Line( xy0=self.xy0*factor, xy1=self.xy1*factor, flag=self.flag )
class Arc( Segment ):
def __init__( self, origin, radius, phi0, phi1, flag=False ):
xy0 = origin + radius * numpy.array([ -numpy.sin(phi0-.5*numpy.pi), numpy.cos(phi0-.5*numpy.pi) ])
xy1 = origin + radius * numpy.array([ -numpy.sin(phi1-.5*numpy.pi), numpy.cos(phi1-.5*numpy.pi) ])
length = abs( (phi1-phi0) * radius )
Segment.__init__( self, xy0, xy1, length, flag=flag )
self.origin = origin
self.radius = radius
self.phi0 = phi0
self.phi1 = phi1
self.type = 'Arc'
def getcoords( self, alpha ):
a = self.phi0 + alpha * ( self.phi1 - self.phi0 )
return self.origin + self.radius*numpy.array( [numpy.cos(a), numpy.sin(a)] ).T
def findclosest( self, xy ):
phi = numpy.arctan2( xy[...,1]-self.origin[1], xy[...,0]-self.origin[0])
if self.radius < 0:
phi += numpy.pi
meanphi = .5 * ( self.phi0 + self.phi1 )
beta = numpy.remainder( phi - (meanphi-numpy.pi), 2*numpy.pi ) - numpy.pi #=> phi === meanphi + beta
dphi = self.phi1 - self.phi0 #=> phi = meanphi + (alpha-.5) * dphi
return beta / dphi + .5
def tangent( self, alpha ):
angle = self.phi0 + alpha * ( self.phi1 - self.phi0 )
return (numpy.array( [numpy.sin(angle), -numpy.cos(angle)] )).T# * numpy.sign( self.radius )).T
def transform( self, shift, angle ):
origin = rotate( self.origin, angle ) + shift
phi0 = self.phi0 - angle
phi1 = self.phi1 - angle
return Arc( origin=origin, radius=self.radius, phi0=phi0, phi1=phi1 )
def scale( self, factor ):
return Arc( origin=self.origin*factor, radius=self.radius*factor, phi0=self.phi0, phi1=self.phi1, flag=self.flag )
class FindClosest( function.Array ):
def __init__( self, curve, coords ):
self.curve = curve
function.Array.__init__( self, args=[coords], shape=(), dtype=float )
def evalf( self, coords ):
return self.curve.findclosest(coords)
class PathCoords( function.Array ):
def __init__( self, curve, alpha ):
self.curve = curve
function.Array.__init__( self, args=[alpha], shape=(2,), dtype=float )
def evalf( self, alpha ):
return self.curve.getcoords(alpha)
class PathTangent( function.Array ):
def __init__( self, curve, alpha ):
self.curve = curve
function.Array.__init__( self, args=[alpha], shape=(2,), dtype=float )
def evalf( self, alpha ):
return self.curve.tangent(alpha)
class PathLength( function.Array ):
def __init__( self, curve, alpha ):
self.curve = curve
function.Array.__init__( self, args=[alpha], shape=(), dtype=float )
def evalf( self, alpha ):
return self.curve.pathlen(alpha)
class PathFlag( function.Array ):
def __init__( self, curve, alpha ):
self.curve = curve
function.Array.__init__( self, args=[alpha], shape=(), dtype=float )
def evalf( self, alpha ):
return self.curve.pathflag(alpha)
class Font( object ):
def __init__( self ):
self.A = Curve( orig=[0,0], angle=numpy.arctan(2) )
self.A.grow( length=numpy.sqrt(1.25) )
self.A.move( angle=-2*numpy.arctan(2) )
self.A.grow( length=numpy.sqrt(1.25) )
self.A.move( absolute=[0.23,0.4], absangle=0 )
self.A.grow( length=0.53)
self.A.move( absolute=[1.2,0.0], absangle=0 )
self.C = Curve( orig=0.5+numpy.array([0.25*numpy.sqrt(2),0.25*numpy.sqrt(2)]), angle=3*pi/4 )
self.C.grow( angle=3*pi/2, curvature=-2. )
self.C.move( absolute=[1.1,0.0], absangle=0 )
self.D = Curve( orig=[0.0,0.0], angle=pi/2 )
self.D.grow( length=1.0 )
self.D.move( angle=-pi/2 )
self.D.grow( length=0.5 )
self.D.grow( angle=pi/2, curvature=4. )
self.D.grow( length=0.5 )
self.D.grow( angle=pi/2, curvature=4. )
self.D.grow( length=0.5 )
self.D.move( absolute=[1.2,0.0], absangle=0 )
self.E = Curve( orig=[0.8,0.0], angle=-pi )
self.E.grow( length=0.8 )
self.E.grow( angle=pi/2, curvature=1000 )
self.E.grow( length=1.0 )
self.E.grow( angle=pi/2, curvature=1000 )
self.E.grow( length=0.8 )
self.E.move( absolute=[0,0.5] )
self.E.grow( length=0.5 )
self.E.move( absolute=[1.0,0.0], absangle=0 )
self.G = Curve( orig=0.5+numpy.array([0.25*numpy.sqrt(2),0.25*numpy.sqrt(2)]), angle=3*pi/4 )
self.G.grow( angle=7*pi/4, curvature=-2. )
self.G.move( absolute=[0.5,0.5], absangle=0 )
self.G.grow( length=0.5 )
self.G.move( absolute=[1.2,0.0], absangle=0 )
self.H = Curve( orig=[0,0], angle=pi/2 )
self.H.grow( length=1.0 )
self.H.move( length=-0.5, absangle=0 )
self.H.grow( length=1.0 )
self.H.move( absolute=[1.0,0.0], absangle=pi/2 )
self.H.grow( length=1.0 )
self.H.move( absolute=[1.2,0.0], absangle=0 )
self.I = Curve( orig=[0.1,0], angle=pi/2 )
self.I.grow( length=1.0 )
self.I.move( absolute=[0.5,0], absangle=0 )
self.L = Curve( orig=[0.0,1.0], angle=-pi/2 )
self.L.grow( length=1.0 )
self.L.move( absangle=0 )
self.L.grow( length=1.0 )
self.L.move( absolute=[1.2,0], absangle=0 )
self.M = Curve( orig=[0.0,0.0], angle=pi/2 )
self.M.grow( length=1.0 )
self.M.move( angle=-2*pi/3 )
self.M.grow( length=0.6 )
self.M.move( angle=pi/3 )
self.M.grow( length=0.6 )
self.M.move( angle=-2*pi/3 )
self.M.grow( length=1.0 )
self.M.move( absolute=[1.2,0.0], absangle=0 )
self.N = Curve( orig=[0,0], angle=pi/2 )
self.N.grow( length=1.0 )
self.N.grow( angle=3*pi/4, curvature=1000 )
self.N.grow( length=numpy.sqrt( 2 ) )
self.N.grow( angle=3*pi/4, curvature=-1000 )
self.N.grow( length=1.0 )
self.N.move( absolute=[1.2,0.0], absangle=0 )
self.O = Curve( orig=[0.5, 0], angle=0 )
self.O.grow( angle=2*pi, curvature=-2.0 )
self.O.move( absolute=[1.2,0.0], absangle=0 )
self.R = Curve( orig=[0,0], angle=pi/2 )
self.R.grow( length=1.0 )
self.R.move( angle=-pi/2 )
self.R.grow( length=0.65 )
self.R.grow( angle=pi, curvature=4 )
self.R.grow( length=0.65 )
self.R.move( absolute=[0.65,0.5], absangle=0 )
self.R.grow( angle=pi/2, curvature=4 )
self.R.grow( length= 0.25 )
self.R.move( absolute=[1.2,0.0], absangle=0 )
self.S = Curve( orig=[1.0,1.0], angle=-pi )
self.S.grow( length=0.65 )
self.S.grow( angle=pi, curvature=-4.0 )
self.S.grow( length=0.5 )
self.S.grow( angle=pi, curvature=4.0 )
self.S.grow( length=0.65 )
self.S.move( absolute=[1.2,0.0], absangle=0 )
self.T = Curve( orig=[0.5,0], angle=pi/2 )
self.T.grow( length=1.0 )
self.T.move( absolute=[0.0,1.0], absangle=0 )
self.T.grow( length=1.0 )
self.T.move( absolute=[1.2,0.0], absangle=0 )
self.U = Curve( orig=[0.0,1.0], angle=-pi/2 )
self.U.grow( length=0.5 )
self.U.grow( angle=pi, curvature=-2.0 )
self.U.grow( length=0.5 )
self.U.move( absolute=[1.2,0.0], absangle=0 )
self.v = Curve( orig=[0.25,0.5], angle=-1*pi/3 )
self.v.grow( length=numpy.sqrt(.25**2+.25) )
self.v.grow( angle=4*pi/3, curvature=1000 )
self.v.grow( length=numpy.sqrt(.25**2+.25) )
self.v.move( absolute=[1.2,0.0], absangle=0 )
self.Z = Curve( orig=[0.0,1.0], angle=0 )
self.Z.grow( length=1.0 )
self.Z.grow( angle=3.*pi/4., curvature=1000 )
self.Z.grow( length=numpy.sqrt( 2 ) )
self.Z.grow( angle=3.*pi/4., curvature=-1000 )
self.Z.grow( length=1.0 )
self.Z.move( absolute=[1.2,0.0], absangle=0 )
def text( self, letters, spacing=0.0, fontsize=1.0, orig=None ):
text = Curve()
if orig is not None:
text.move( absolute=orig )
for iletter, letter in enumerate( letters ):
text += getattr( self, letter ).scale( factor=fontsize )
text.move( length=spacing )
self.line = text
return text
def addtext( self, letters, spacing=0.0, fontsize=1.0, orig=None ):
text=self.line
if orig is not None:
text.move( absolute=orig )
for iletter, letter in enumerate( letters ):
text += getattr( self, letter.upper() ).scale( factor=fontsize )
text.move( length=spacing )
self.line = text
return text