This repository has been archived by the owner on Oct 18, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 152
/
train_classification.py
41 lines (35 loc) · 1.97 KB
/
train_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping
from config import *
from generators import get_classify_batch
from model_VGG import get_simplified_VGG_classifier, get_full_VGG_classifier
from model_Inception import get_Inception_classifier
from model_DenseNet import get_DenseNet_classifier
from model_ResNet import get_ResNet_classifier
import time
def classify_train():
print('start classify_train')
if TRAIN_CLASSIFY_MODEL.lower() == 'vgg':
model = get_simplified_VGG_classifier() if USE_SIMPLIFIED_VGG else get_full_VGG_classifier()
elif TRAIN_CLASSIFY_MODEL.lower() == 'inception':
model = get_Inception_classifier()
elif TRAIN_CLASSIFY_MODEL.lower() == 'resnet':
model = get_ResNet_classifier()
elif TRAIN_CLASSIFY_MODEL.lower() == 'densenet':
model = get_DenseNet_classifier()
else:
print('no such model:{}'.format(TRAIN_CLASSIFY_MODEL))
return
model.summary()
run = '{}-{}-{}'.format(TRAIN_CLASSIFY_MODEL, time.localtime().tm_hour, time.localtime().tm_min)
log_dir = CLASSIFY_LOG_DIR.format(run)
check_point = log_dir + '/checkpoint-{epoch:02d}-{val_loss:.4f}.hdf5'
print("classify train round {}".format(run))
tensorboard = TensorBoard(log_dir=log_dir, write_graph=False)
checkpoint = ModelCheckpoint(filepath=check_point, monitor='val_loss', verbose=1, save_best_only=True)
early_stopping = EarlyStopping(monitor='val_loss', patience=TRAIN_CLASSIFY_EARLY_STOPPING_PATIENCE, verbose=1)
model.fit_generator(get_classify_batch(TRAIN_CLASSIFY_TRAIN_BATCH_SIZE, from_train=True), steps_per_epoch=TRAIN_CLASSIFY_STEPS_PER_EPOCH,
validation_data=get_classify_batch(TRAIN_CLASSIFY_VALID_BATCH_SIZE, from_train=False), validation_steps=TRAIN_CLASSIFY_VALID_STEPS,
epochs=TRAIN_CLASSIFY_EPOCHS, verbose=2,
callbacks=[tensorboard, checkpoint, early_stopping])
if __name__ == '__main__':
classify_train()