-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.cpp
145 lines (117 loc) · 3.83 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
// main.cpp
//
// Copyright UTAT 2015
// Author: Winston Liu
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/opencv.hpp>
#include <stdlib.h>
#include <string>
#include <iostream>
#include "surf/dbscan.h"
#define ACTIVE_CHANNEL 1
#define SAVE_INTERMEDIATE_IMAGES
#ifdef SAVE_INTERMEDIATE_IMAGES
#define IMOUT( filename , mat_im ) do { cv::imwrite(filename, mat_im); } while (0)
#else
#define IMOUT( filename, mat_im )
#endif
float DBSCAN_eps = 200;
int DBSCAN_minPts= 2;
// ROI is at most 1/10 of full-sized image
int roiProportionalSize = 10;
cv::Point2i getMean(std::vector<cv::KeyPoint>& subsetKeys)
{
if (subsetKeys.empty() == true)
return cv::Point2i(0, 0);
cv::Point2i meanpt(0, 0);
int greatest_dist = 0;
int maxsize = 0;
// Calculate mean
for (int i = 0; i < subsetKeys.size(); ++i)
{
meanpt.x += subsetKeys[i].pt.x;
meanpt.y += subsetKeys[i].pt.y;
}
meanpt.x /= subsetKeys.size();
meanpt.y /= subsetKeys.size();
return meanpt;
}
std::vector<cv::KeyPoint> procImWithSurf(cv::Mat raw_input, int SURF_thresh)
{
cv::Mat outim, channels[3];
// Convert to HSV
cv::Mat hsvchannel, hsvim;
cv::cvtColor(raw_input, hsvim, CV_RGB2HSV);
cv::split(hsvim, channels);
IMOUT("hsvim.jpg", hsvim);
hsvchannel = channels[ACTIVE_CHANNEL];
// Denoise
cv::blur(hsvchannel, hsvchannel, cv::Size(10,10));
IMOUT("blurred.jpg", hsvchannel);
// Default is ( ~, 4, 2, true, false)
// See http://docs.opencv.org/modules/nonfree/doc/feature_detection.html
cv::Mat mask;
std::vector<cv::KeyPoint> keypoints;
cv::SURF mySurf(SURF_thresh, 4, 2, true, true);
mySurf(hsvchannel, mask, keypoints);
IMOUT("surf.jpg", hsvchannel);
// Print keypoints
cv::drawKeypoints(hsvchannel, keypoints, outim, (0, 255, 0), 4);
IMOUT("keypoints.jpg", hsvchannel);
IMOUT("imout.jpg", outim);
return keypoints;
}
cv::Rect getROISize(cv::Size image_dim, cv::Point2i cluster_mean, int rps)
{
// rps: ROI size proportional to whole image
// Get ROI size as function of image size
cv::Point2i roi;
roi.x = image_dim.width / rps;
roi.y = image_dim.height / rps;
// Set mean coordinates to the upper left corner
cluster_mean.x -= roi.x / 2;
cluster_mean.y -= roi.y / 2;
// Clamp to image range
if (cluster_mean.x < 0)
cluster_mean.x = 0;
else if (cluster_mean.x + roi.x > image_dim.width)
roi.x = image_dim.width - cluster_mean.x;
if (cluster_mean.y < 0)
cluster_mean.y = 0;
else if (cluster_mean.y + roi.y > image_dim.height)
roi.y = image_dim.height - cluster_mean.y;
return cv::Rect(cluster_mean.x, cluster_mean.y, roi.x, roi.y);
}
int main (int argc, char* argv[])
{
if (argc != 3)
{
std::cout <<
"./image_proc <file> <thresh> (-1 for default)" << std::endl;
return -1;
}
// Get image
cv::Mat test_im = cv::imread(argv[1], CV_LOAD_IMAGE_COLOR);
std::vector<cv::KeyPoint> keypoints = procImWithSurf(test_im, atoi(argv[2]));
// DBSCAN -> returns a tree of vectors
std::vector<std::vector<cv::KeyPoint> > clusters = DBSCAN_keypoints(&keypoints, DBSCAN_eps, DBSCAN_minPts);
for (int i = 0; i < clusters.size(); ++i)
{
// Calculate mean
cv::Point2i mean = getMean(clusters[i]);
if (mean.x == 0 && mean.y == 0)
continue;
cv::Rect roiBounds = getROISize(test_im.size(), mean, roiProportionalSize);
// Display ROI
// Name image
std::string raw_name(argv[1]);
int firstindex = raw_name.find_last_of("/");
int lastindex = raw_name.find_last_of(".");
std::string proc_name = raw_name.substr(firstindex + 1, lastindex);
std::ostringstream oss;
oss << "ROI_" << proc_name << "_" << i << ".jpg";
cv::Mat roiOut = test_im(roiBounds).clone();
IMOUT(oss.str(), roiOut);
}
}