-
Notifications
You must be signed in to change notification settings - Fork 6
/
augment.py
168 lines (134 loc) · 5.54 KB
/
augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import nibabel as nib
from nilearn.image import new_img_like, resample_to_img
import random
import itertools
import pdb
def scale_image(image, scale_factor):
scale_factor = np.asarray(scale_factor)
new_affine = np.copy(image.affine)
new_affine[:3, :3] = image.affine[:3, :3] * scale_factor
new_affine[:, 3][:3] = image.affine[:, 3][:3] + (image.shape * np.diag(image.affine)[:3] * (1 - scale_factor)) / 2
return new_img_like(image, data=image.get_data(), affine=new_affine)
def flip_image(image, axis):
try:
new_data = np.copy(image.get_data())
for axis_index in axis:
new_data = np.flip(new_data, axis=axis_index)
except TypeError:
new_data = np.flip(image.get_data(), axis=axis)
return new_img_like(image, data=new_data)
def random_flip_dimensions(n_dimensions):
axis = list()
for dim in range(n_dimensions):
if random_boolean():
axis.append(dim)
return axis
def random_scale_factor(n_dim=3, mean=1, std=0.25):
return np.random.normal(mean, std, n_dim)
def random_boolean():
return np.random.choice([True, False])
def distort_image(image, flip_axis=None, scale_factor=None):
if flip_axis:
image = flip_image(image, flip_axis)
if scale_factor is not None:
image = scale_image(image, scale_factor)
return image
def do_augment(data, truth, affine, scale_deviation=None, flip=True):
'''
data.shape = (4,_,_,_)
truth.shape = (1,_,_,_)
'''
n_dim = len(truth.shape) - 1
scale_factor = random_scale_factor(n_dim, std=scale_deviation) if scale_deviation is not None else None
flip_axis = random_flip_dimensions(n_dim) if flip else None
data = augment_data(data, affine, scale_factor, flip_axis)
truth = augment_data(truth, affine, scale_factor, flip_axis)
return data, truth
def augment_data(data, affine, scale_factor, flip_axis):
data_list = []
for data_index in range(data.shape[0]):
image = get_image(data[data_index], affine)
data_list.append(resample_to_img(distort_image(image, flip_axis=flip_axis,
scale_factor=scale_factor), image,
interpolation="nearest").get_data())
# interpolation="continuous").get_data())
return np.asarray(data_list)
def get_image(data, affine, nib_class=nib.Nifti1Image):
return nib_class(dataobj=data, affine=affine)
# -------------------------------------- permutation: -----------------------------------
def generate_permutation_keys():
"""
This function returns a set of "keys" that represent the 48 unique rotations &
reflections of a 3D matrix.
Each item of the set is a tuple:
((rotate_y, rotate_z), flip_x, flip_y, flip_z, transpose)
As an example, ((0, 1), 0, 1, 0, 1) represents a permutation in which the data is
rotated 90 degrees around the z-axis, then reversed on the y-axis, and then
transposed.
48 unique rotations & reflections:
https://en.wikipedia.org/wiki/Octahedral_symmetry#The_isometries_of_the_cube
"""
return set(itertools.product(
itertools.combinations_with_replacement(range(2), 2), range(2), range(2), range(2), range(2)))
def random_permutation_key():
"""
Generates and randomly selects a permutation key. See the documentation for the
"generate_permutation_keys" function.
"""
return random.choice(list(generate_permutation_keys()))
def permute_data(data, key):
"""
Permutes the given data according to the specification of the given key. Input data
must be of shape (n_modalities, x, y, z).
Input key is a tuple: (rotate_y, rotate_z), flip_x, flip_y, flip_z, transpose)
As an example, ((0, 1), 0, 1, 0, 1) represents a permutation in which the data is
rotated 90 degrees around the z-axis, then reversed on the y-axis, and then
transposed.
"""
data = np.copy(data)
(rotate_y, rotate_z), flip_x, flip_y, flip_z, transpose = key
if rotate_y != 0:
data = np.rot90(data, rotate_y, axes=(1, 3))
if rotate_z != 0:
data = np.rot90(data, rotate_z, axes=(2, 3))
if flip_x:
data = data[:, ::-1]
if flip_y:
data = data[:, :, ::-1]
if flip_z:
data = data[:, :, :, ::-1]
if transpose:
for i in range(data.shape[0]):
data[i] = data[i].T
return data
def random_permutation_x_y(x_data, y_data):
"""
Performs random permutation on the data.
:param x_data: numpy array containing the data. Data must be of shape (n_modalities, x, y, z).
:param y_data: numpy array containing the data. Data must be of shape (n_modalities, x, y, z).
:return: the permuted data
"""
key = random_permutation_key()
return permute_data(x_data, key), permute_data(y_data, key)
# def reverse_permute_data(data, key):
# key = reverse_permutation_key(key)
# data = np.copy(data)
# (rotate_y, rotate_z), flip_x, flip_y, flip_z, transpose = key
# if transpose:
# for i in range(data.shape[0]):
# data[i] = data[i].T
# if flip_z:
# data = data[:, :, :, ::-1]
# if flip_y:
# data = data[:, :, ::-1]
# if flip_x:
# data = data[:, ::-1]
# if rotate_z != 0:
# data = np.rot90(data, rotate_z, axes=(2, 3))
# if rotate_y != 0:
# data = np.rot90(data, rotate_y, axes=(1, 3))
# return data
# def reverse_permutation_key(key):
# rotation = tuple([-rotate for rotate in key[0]])
# return rotation, key[1], key[2], key[3], key[4]