-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrainval_multi.py
681 lines (590 loc) · 35.2 KB
/
trainval_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
import inits
import argparse
import logging
import pprint
import datetime
import sys
import random
from dataset.factory import get_dataset
from model.factory import get_model
from discriminator.factory import get_discriminator
from model.centroids import Centroids
from torch.utils import data
from utils.train_utils import adaptation_factor, semantic_loss_calc, get_optimizer_params
from utils.train_utils import LRScheduler, Monitor
from utils import io_utils, eval_utils
import torch.nn.functional as F
import torch.optim as optim
import os
import torch
import torch.nn as nn
import numpy as np
def parse_args(args=None, namespace=None):
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(
description='Train and Validate DSBN Network.\n' + \
'target label:0, sorce label:1,2,... \n' + \
'[digits: svhn, mnist, usps || ' + \
'office: amazon, webcam, dslr || ' + \
'office-home: Art, Clipart, Product, RealWorld || ' + \
'imageCLEF: caltech, pascal, imagenet || ' + \
'visDA: train, validation]')
parser.add_argument('--model-name',
help="model name ['lenet', 'resnet50', 'resnet50dsbn', 'resnet101', 'resnet101dsbn']",
default='resnet50', type=str)
parser.add_argument('--exp-setting', help='exp setting[digits, office, imageclef, visda]', default='office',
type=str)
parser.add_argument('--init-model-path', help='init model path', default='', type=str)
parser.add_argument('--save-dir', help='directory to save models', default='output/office_default', type=str)
# model options
parser.add_argument('--num-classes', help='number of classes', default=0, type=int)
parser.add_argument('--source-datasets', help='source training dataset', default=['amazon', 'dslr'],
nargs='+')
parser.add_argument('--merge-sources', help='Use merged dataset as source dataset.', action='store_true')
parser.add_argument('--target-datasets', help='target training dataset', default=['webcam'], nargs='+')
parser.add_argument('--in-features', help='add in feature dimension. 0 for label logit space.', default=0,
type=int)
parser.add_argument('--jitter', default='None', type=str,
help='data loader additional jitter type. None option is default jittering(rgb224)' +
' [None, grey224, grey160, rgb160]')
# machine options
parser.add_argument('--num-workers', help='number of worker to load data', default=2, type=int)
parser.add_argument('--batch-size', help='batch_size', default=40, type=int)
parser.add_argument("--gpu", type=int, default=0, help="choose gpu device.")
parser.add_argument('--manual-seed', type=int, default=0, help='manual random seed')
# train hyper-parameters
parser.add_argument('--max-step', help='maximum step', default=70000, type=int)
parser.add_argument('--early-stop-step', help='early stop step', default=70000, type=int)
parser.add_argument('--warmup-learning-rate', '-wlr', help='warmup learning rate', default=5e-6, type=float)
parser.add_argument('--warmup-step', type=int, default=20000, help='warm-up iterations')
parser.add_argument('--optimizer', help='[Adam/SGD]', default='Adam', type=str)
parser.add_argument('--learning-rate', '-lr', dest='learning_rate', help='learning_rate', default=1e-5, type=float)
parser.add_argument('--beta1', dest='beta1', help='beta1 for Adam', default=0.9, type=float)
parser.add_argument('--beta2', dest='beta2', help='beta2 for Adam', default=0.999, type=float)
parser.add_argument('--weight-decay', help='weight decay', default=0.0, type=float)
parser.add_argument('--double-bias-lr', help='double-bias', action='store_true')
parser.add_argument('--base-weight-factor', help='reduce base_weight learning rate by the factor value',
default=0.1, type=float)
# trainval parameters
parser.add_argument('--adaptation-gamma', help='adaptation gamma value', default=10, type=float)
parser.add_argument('--adv-loss', help='add domain loss', action='store_true')
parser.add_argument('--domain-loss-adjust-factor', help='domain loss factor', default=0.1, type=float)
parser.add_argument('--sm-loss', help='add moving semantic loss', action='store_true')
parser.add_argument('--sm-etha', help='sm loss adjust factor', default=1.0, type=float)
# log and diaplay
parser.add_argument('--use-tfboard', help='whether use tensorflow tensorboard',
action='store_true')
parser.add_argument('--save-model-hist', help='save model histogram on tfboard', action='store_true')
parser.add_argument('--disp-interval', help='number of iterations to display', default=10,
type=int)
parser.add_argument('--save-interval',
help='number of iterations to save. if save_interval < 0, no saving mode.',
default=500,
type=int)
parser.add_argument('--print-console', help='activate console display', action='store_true')
parser.add_argument('--save-ckpts', help='whether to save the checkpoints in every save_interval',
action='store_true')
parser.add_argument('--resume', help='resume from latest(or best) checkpoint', action='store_true')
args = parser.parse_args(args=args, namespace=namespace)
return args
def main():
args = parse_args()
args.dsbn = True if 'dsbn' in args.model_name else False # set dsbn
args.source_dataset = '|'.join(args.source_datasets)
args.target_dataset = '|'.join(args.target_datasets)
torch.cuda.set_device(args.gpu) # set current gpu device id so pin_momory works on the target gpu
start_time = datetime.datetime.now() # execution start time
# make save_dir
if not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
# create log file
log_filename = 'train_records.log'
log_path = os.path.join(args.save_dir, log_filename)
logger = io_utils.get_logger(__name__, log_file=log_path, write_level=logging.INFO,
print_level=logging.INFO if args.print_console else None,
mode='a' if args.resume else 'w')
# set num_classes by checking exp_setting
if args.num_classes == 0:
if args.exp_setting == 'digits':
logger.warning('num_classes are not 10! set to 10.')
args.num_classes = 10
elif args.exp_setting == 'office':
logger.warning('num_classes are not 31! set to 31.')
args.num_classes = 31
elif args.exp_setting in ['visda', 'imageclef']:
logger.warning('num_classes are not 12! set to 12.')
args.num_classes = 12
elif args.exp_setting in ['office-home']:
logger.warning('num_classes are not 65! set to 65.')
args.num_classes = 65
elif args.exp_setting in ['office-caltech']:
args.num_classes = 10
else:
raise AttributeError('Wrong num_classes: {}'.format(args.num_classes))
if args.manual_seed:
# set manual seed
args.manual_seed = np.uint32(args.manual_seed)
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed(args.manual_seed)
random.seed(args.manual_seed)
np.random.seed(args.manual_seed)
logger.info('Random Seed: {}'.format(int(args.manual_seed)))
args.random_seed = args.manual_seed # save seed into args
else:
seed = np.uint32(random.randrange(sys.maxsize))
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
np.random.seed(np.uint32(seed))
logger.info('Random Seed: {}'.format(seed))
args.random_seed = seed # save seed into args
if args.resume:
logger.info('Resume training')
else:
logger.info('\nArguments:\n' + pprint.pformat(vars(args), indent=4)) # print args
torch.save(vars(args), os.path.join(args.save_dir, 'args_dict.pth')) # save args
num_classes = args.num_classes
in_features = args.in_features if args.in_features != 0 else num_classes
num_domains = len(args.source_datasets) + len(args.target_datasets)
if args.merge_sources:
num_source_domains = 1
else:
num_source_domains = len(args.source_datasets)
num_target_domains = len(args.target_datasets)
# tfboard
if args.use_tfboard:
from tensorboardX import SummaryWriter
tfboard_dir = os.path.join(args.save_dir, 'tfboard')
if not os.path.isdir(tfboard_dir):
os.makedirs(tfboard_dir)
writer = SummaryWriter(tfboard_dir)
# resume
if args.resume:
try:
checkpoints = io_utils.load_latest_checkpoints(args.save_dir, args, logger)
except FileNotFoundError:
logger.warning('Latest checkpoints are not found! Trying to load best model...')
checkpoints = io_utils.load_best_checkpoints(args.save_dir, args, logger)
start_iter = checkpoints[0]['iteration'] + 1
else:
start_iter = 1
###################################################################################################################
# Data Loading #
###################################################################################################################
source_train_datasets = [get_dataset("{}_{}_{}_{}".format(args.model_name, source_name, 'train', args.jitter))
for source_name in args.source_datasets]
target_train_datasets = [get_dataset("{}_{}_{}_{}".format(args.model_name, target_name, 'train', args.jitter))
for target_name in args.target_datasets]
if args.merge_sources:
for i in range(len(source_train_datasets)):
if i == 0:
merged_source_train_datasets = source_train_datasets[i]
else:
# concatenate dataset
merged_source_train_datasets = merged_source_train_datasets + source_train_datasets[i]
source_train_datasets = [merged_source_train_datasets]
# dataloader
source_train_dataloaders = [data.DataLoader(source_train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, drop_last=True, pin_memory=True)
for source_train_dataset in source_train_datasets]
target_train_dataloaders = [data.DataLoader(target_train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, drop_last=True, pin_memory=True)
for target_train_dataset in target_train_datasets]
source_train_dataloader_iters = [enumerate(source_train_dataloader) for source_train_dataloader in
source_train_dataloaders]
target_train_dataloader_iters = [enumerate(target_train_dataloader) for target_train_dataloader in
target_train_dataloaders]
# validation dataloader
target_val_datasets = [get_dataset("{}_{}_{}_{}".format(args.model_name, target_name, 'val', args.jitter))
for target_name in args.target_datasets]
target_val_dataloaders = [data.DataLoader(target_val_dataset, batch_size=args.batch_size,
shuffle=False, num_workers=args.num_workers, pin_memory=True)
for target_val_dataset in target_val_datasets]
###################################################################################################################
# Model Loading #
###################################################################################################################
model = get_model(args.model_name, args.num_classes, args.in_features, num_domains=num_domains, pretrained=True)
model.train(True)
if args.resume:
model.load_state_dict(checkpoints[0]['model'])
elif args.init_model_path:
init_checkpoint = torch.load(args.init_model_path)
model.load_state_dict(init_checkpoint['model'])
model = model.cuda(args.gpu)
params = get_optimizer_params(model, args.learning_rate, weight_decay=args.weight_decay,
double_bias_lr=args.double_bias_lr, base_weight_factor=args.base_weight_factor)
if args.adv_loss:
discriminators = [get_discriminator(args.exp_setting,
in_features=args.in_features if args.in_features != 0 else args.num_classes)
for _ in range(num_target_domains) for _ in range(num_source_domains)]
discriminators = [discriminator.cuda(args.gpu) for discriminator in discriminators]
D_params = get_optimizer_params(discriminators, args.learning_rate, weight_decay=args.weight_decay,
double_bias_lr=args.double_bias_lr, base_weight_factor=None)
if args.resume:
if checkpoints[1]:
for d_idx, discriminator in enumerate(discriminators):
discriminator.load_state_dict(checkpoints[1]['discriminators'][d_idx])
if args.sm_loss:
srcs_centroids = [Centroids(in_features, num_classes) for _ in range(num_source_domains)]
trgs_centroids = [Centroids(in_features, num_classes) for _ in range(num_target_domains)]
if args.resume:
if checkpoints[2]:
for src_idx, src_centroids in enumerate(srcs_centroids):
src_centroids.load_state_dict(checkpoints[2]['srcs_centroids'][src_idx])
for trg_idx, trg_centroids in enumerate(trgs_centroids):
trg_centroids.load_state_dict(checkpoints[2]['trgs_centroids'][trg_idx])
srcs_centroids = [src_centroids.cuda(args.gpu) for src_centroids in srcs_centroids]
trgs_centroids = [trg_centroids.cuda(args.gpu) for trg_centroids in trgs_centroids]
###################################################################################################################
# Train Configurations #
###################################################################################################################
ce_loss = nn.CrossEntropyLoss()
bce_loss = nn.BCEWithLogitsLoss()
# mse_loss = nn.MSELoss()
lr_scheduler = LRScheduler(args.learning_rate, args.warmup_learning_rate, args.warmup_step,
num_steps=args.max_step,
alpha=10, beta=0.75, double_bias_lr=args.double_bias_lr,
base_weight_factor=args.base_weight_factor)
if args.optimizer.lower() == 'sgd':
optimizer = optim.SGD(params, momentum=0.9, nesterov=True)
else:
optimizer = optim.Adam(params, betas=(args.beta1, args.beta2))
if args.resume:
if checkpoints[1]:
optimizer.load_state_dict(checkpoints[1]['optimizer'])
if args.adv_loss:
if args.optimizer.lower() == 'sgd':
optimizer_D = optim.SGD(D_params, momentum=0.9, nesterov=True)
else:
optimizer_D = optim.Adam(D_params, betas=(args.beta1, args.beta2))
if args.resume:
if checkpoints[1]:
optimizer_D.load_state_dict(checkpoints[1]['optimizer_D'])
# Train Starts
logger.info('Train Starts')
domain_loss_adjust_factor = args.domain_loss_adjust_factor
monitor = Monitor()
global best_accuracy
global best_accuracies_each_c
global best_mean_val_accuracies
global best_total_val_accuracies
best_accuracy = 0.0
best_accuracies_each_c = []
best_mean_val_accuracies = []
best_total_val_accuracies = []
for i_iter in range(start_iter, args.early_stop_step + 1):
src_inputs = []
for src_dataloader_idx in range(len(source_train_dataloader_iters)):
try:
_, (x_s, y_s) = source_train_dataloader_iters[src_dataloader_idx].__next__()
src_inputs.append((x_s, y_s))
except StopIteration:
source_train_dataloader_iters[src_dataloader_idx] = enumerate(
source_train_dataloaders[src_dataloader_idx])
_, (x_s, y_s) = source_train_dataloader_iters[src_dataloader_idx].__next__()
src_inputs.append((x_s, y_s))
trg_inputs = []
for trg_dataloader_idx in range(len(target_train_dataloader_iters)):
try:
_, (x_t, _) = target_train_dataloader_iters[trg_dataloader_idx].__next__()
trg_inputs.append((x_t, None))
except StopIteration:
target_train_dataloader_iters[trg_dataloader_idx] = enumerate(
target_train_dataloaders[trg_dataloader_idx])
_, (x_t, _) = target_train_dataloader_iters[trg_dataloader_idx].__next__()
trg_inputs.append((x_t, None))
current_lr = lr_scheduler.current_lr(i_iter)
adaptation_lambda = adaptation_factor((i_iter - args.warmup_step) / float(args.max_step),
gamma=args.adaptation_gamma)
# init optimizer
optimizer.zero_grad()
lr_scheduler(optimizer, i_iter)
if args.adv_loss:
optimizer_D.zero_grad()
lr_scheduler(optimizer_D, i_iter)
########################################################################################################
# Train G #
########################################################################################################
if args.adv_loss:
for discriminator in discriminators:
for param in discriminator.parameters():
param.requires_grad = False
# ship to cuda
src_inputs = [(x_s.cuda(args.gpu), y_s.cuda(args.gpu)) for (x_s, y_s) in src_inputs]
trg_inputs = [(x_t.cuda(args.gpu), None) for (x_t, _) in trg_inputs]
if args.dsbn:
src_preds = []
for src_idx, (x_s, y_s) in enumerate(src_inputs):
pred_s, f_s = model(x_s, src_idx * torch.ones(x_s.shape[0], dtype=torch.long).cuda(args.gpu),
with_ft=True)
src_preds.append((pred_s, f_s))
trg_preds = []
for trg_idx, (x_t, _) in enumerate(trg_inputs, num_source_domains):
pred_t, f_t = model(x_t, trg_idx * torch.ones(x_t.shape[0], dtype=torch.long).cuda(args.gpu),
with_ft=True)
trg_preds.append((pred_t, f_t))
else:
src_preds = []
for src_idx, (x_s, y_s) in enumerate(src_inputs):
pred_s, f_s = model(x_s, with_ft=True)
src_preds.append((pred_s, f_s))
trg_preds = []
for trg_idx, (x_t, _) in enumerate(trg_inputs, num_source_domains):
pred_t, f_t = model(x_t, with_ft=True)
trg_preds.append((pred_t, f_t))
Closs_src = 0
for (_, y_s), (pred_s, _) in zip(src_inputs, src_preds):
Closs_src = Closs_src + ce_loss(pred_s, y_s) / float(num_source_domains)
monitor.update({"Loss/Closs_src": float(Closs_src)})
Floss = Closs_src
if args.adv_loss:
# adversarial loss
Gloss = 0
for trg_idx, (_, f_t) in enumerate(trg_preds):
for src_idx, (_, f_s) in enumerate(src_preds):
Dout_s = discriminators[trg_idx * num_source_domains + src_idx](f_s)
source_label = torch.zeros_like(Dout_s).cuda(args.gpu)
loss_adv_src = domain_loss_adjust_factor * bce_loss(Dout_s, source_label) / 2
Dout_t = discriminators[trg_idx * num_source_domains + src_idx](f_t)
target_label = torch.ones_like(Dout_t).cuda(args.gpu)
loss_adv_trg = domain_loss_adjust_factor * bce_loss(Dout_t, target_label) / 2
Gloss = Gloss - (loss_adv_src + loss_adv_trg)
Gloss = Gloss / float(num_target_domains * num_source_domains)
monitor.update({'Loss/Gloss': float(Gloss)})
Floss = Floss + adaptation_lambda * Gloss
# pseudo label generation
pred_t_pseudos = []
if args.dsbn:
with torch.no_grad():
model.eval()
for trg_idx, (x_t, _) in enumerate(trg_inputs, num_source_domains):
pred_t_pseudo = model(x_t, trg_idx * torch.ones(x_t.shape[0], dtype=torch.long).cuda(args.gpu),
with_ft=False)
pred_t_pseudos.append(pred_t_pseudo)
model.train(True)
else:
with torch.no_grad():
model.eval()
for trg_idx, (x_t, _) in enumerate(trg_inputs, num_source_domains):
pred_t_pseudo = model(x_t, with_ft=False)
pred_t_pseudos.append(pred_t_pseudo)
model.train(True)
# moving semantic loss
if args.sm_loss:
current_srcs_centroids = [src_centroids(f_s, y_s) for src_centroids, (x_s, y_s), (_, f_s) in
zip(srcs_centroids, src_inputs, src_preds)]
current_trgs_centroids = [trg_centroids(f_t, torch.argmax(pred_t_pseudo, 1)) for
trg_centroids, pred_t_pseudo, (_, f_t) in
zip(trgs_centroids, pred_t_pseudos, trg_preds)]
semantic_loss = 0
for current_trg_centroids in current_trgs_centroids:
for current_src_centroids in current_srcs_centroids:
semantic_loss = semantic_loss + args.sm_etha * semantic_loss_calc(current_src_centroids,
current_trg_centroids)
semantic_loss = semantic_loss / float(num_target_domains * num_source_domains)
monitor.update({'Loss/SMloss': float(semantic_loss)})
Floss = Floss + adaptation_lambda * semantic_loss
# Floss backward
Floss.backward()
optimizer.step()
########################################################################################################
# Train D #
########################################################################################################
if args.adv_loss:
for discriminator in discriminators:
for param in discriminator.parameters():
param.requires_grad = True
if args.adv_loss:
# adversarial loss
Dloss = 0
for trg_idx, (_, f_t) in enumerate(trg_preds):
for src_idx, (_, f_s) in enumerate(src_preds):
Dout_s = discriminators[trg_idx * num_source_domains + src_idx](f_s.detach())
source_label = torch.zeros_like(Dout_s).cuda(args.gpu)
loss_adv_src = domain_loss_adjust_factor * bce_loss(Dout_s, source_label) / 2
# target
Dout_t = discriminators[trg_idx * num_source_domains + src_idx](f_t.detach())
target_label = torch.ones_like(Dout_t).cuda(args.gpu)
loss_adv_trg = domain_loss_adjust_factor * bce_loss(Dout_t, target_label) / 2
Dloss = Dloss + loss_adv_src + loss_adv_trg
Dloss = Dloss / float(num_target_domains * num_source_domains)
monitor.update({'Loss/Dloss': float(Dloss)})
Dloss = adaptation_lambda * Dloss
Dloss.backward()
optimizer_D.step()
if args.sm_loss:
for src_centroids, current_src_centroids in zip(srcs_centroids, current_srcs_centroids):
src_centroids.centroids.data = current_src_centroids.data
for trg_centroids, current_trg_centroids in zip(trgs_centroids, current_trgs_centroids):
trg_centroids.centroids.data = current_trg_centroids.data
if i_iter % args.disp_interval == 0 and i_iter != 0:
disp_msg = 'iter[{:8d}/{:8d}], '.format(i_iter, args.early_stop_step)
disp_msg += str(monitor)
if args.adv_loss or args.sm_loss:
disp_msg += ', lambda={:.6f}'.format(adaptation_lambda)
disp_msg += ', lr={:.6f}'.format(current_lr)
logger.info(disp_msg)
if args.use_tfboard:
if args.save_model_hist:
for name, param in model.named_parameters():
writer.add_histogram(name, param.cpu().data.numpy(), i_iter, bins='auto')
for k, v in monitor.losses.items():
writer.add_scalar(k, v, i_iter)
if args.adv_loss or args.sm_loss:
writer.add_scalar('adaptation_lambda', adaptation_lambda, i_iter)
writer.add_scalar('learning rate', current_lr, i_iter)
monitor.reset()
if i_iter % args.save_interval == 0 and i_iter != 0:
logger.info("Elapsed Time: {}".format(datetime.datetime.now() - start_time))
logger.info("Start Evaluation at {:d}".format(i_iter))
target_val_dataloader_iters = [enumerate(target_val_dataloader)
for target_val_dataloader in target_val_dataloaders]
total_val_accuracies = []
mean_val_accuracies = []
val_accuracies_each_c = []
model.eval() # evaluation mode
for trg_idx, target_val_dataloader_iter in enumerate(target_val_dataloader_iters, num_source_domains):
pred_vals = []
y_vals = []
x_val = None
y_val = None
pred_val = None
with torch.no_grad():
for i, (x_val, y_val) in target_val_dataloader_iter:
y_vals.append(y_val.cpu())
x_val = x_val.cuda(args.gpu)
y_val = y_val.cuda(args.gpu)
if args.dsbn:
pred_val = model(x_val, trg_idx * torch.ones_like(y_val), with_ft=False)
else:
pred_val = model(x_val, with_ft=False)
pred_vals.append(pred_val.cpu())
pred_vals = torch.cat(pred_vals, 0)
y_vals = torch.cat(y_vals, 0)
total_val_accuracy = float(eval_utils.accuracy(pred_vals, y_vals, topk=(1,))[0])
val_accuracy_each_c = [(c_name, float(eval_utils.accuracy_of_c(pred_vals, y_vals,
class_idx=c, topk=(1,))[0]))
for c, c_name in
enumerate(target_val_datasets[trg_idx - num_source_domains].classes)]
logger.info('\n{} Accuracy of Each class\n'.format(args.target_datasets[trg_idx - num_source_domains]) +
''.join(["{:<25}: {:.2f}%\n".format(c_name, 100 * c_val_acc)
for c_name, c_val_acc in val_accuracy_each_c]))
mean_val_accuracy = float(
torch.mean(torch.FloatTensor([c_val_acc for _, c_val_acc in val_accuracy_each_c])))
logger.info('{} mean Accuracy: {:.2f}%'.format(
args.target_datasets[trg_idx - num_source_domains], 100 * mean_val_accuracy))
logger.info(
'{} Accuracy: {:.2f}%'.format(args.target_datasets[trg_idx - num_source_domains],
total_val_accuracy * 100))
total_val_accuracies.append(total_val_accuracy)
val_accuracies_each_c.append(val_accuracy_each_c)
mean_val_accuracies.append(mean_val_accuracy)
if args.use_tfboard:
writer.add_scalar('Val_acc', total_val_accuracy, i_iter)
for c_name, c_val_acc in val_accuracy_each_c:
writer.add_scalar('Val_acc_of_{}'.format(c_name), c_val_acc)
model.train(True) # train mode
if args.exp_setting.lower() == 'visda':
val_accuracy = float(torch.mean(torch.FloatTensor(mean_val_accuracies)))
else:
val_accuracy = float(torch.mean(torch.FloatTensor(total_val_accuracies)))
# for memory
del x_val, y_val, pred_val, pred_vals, y_vals
for target_val_dataloader_iter in target_val_dataloader_iters:
del target_val_dataloader_iter
del target_val_dataloader_iters
if val_accuracy > best_accuracy:
# save best model
best_accuracy = val_accuracy
best_accuracies_each_c = val_accuracies_each_c
best_mean_val_accuracies = mean_val_accuracies
best_total_val_accuracies = total_val_accuracies
options = io_utils.get_model_options_from_args(args, i_iter)
# dict to save
model_dict = {'model': model.cpu().state_dict()}
optimizer_dict = {'optimizer': optimizer.state_dict()}
if args.adv_loss:
optimizer_dict.update({'optimizer_D': optimizer_D.state_dict(),
'discriminators': [discriminator.cpu().state_dict()
for discriminator in discriminators],
'source_datasets': args.source_datasets,
'target_datasets': args.target_datasets})
centroids_dict = {}
if args.sm_loss:
centroids_dict = {
'srcs_centroids': [src_centroids.cpu().state_dict() for src_centroids in srcs_centroids],
'trgs_centroids': [trg_centroids.cpu().state_dict() for trg_centroids in trgs_centroids]}
# save best checkpoint
io_utils.save_checkpoints(args.save_dir, options, i_iter, model_dict, optimizer_dict, centroids_dict,
logger, best=True)
# ship to cuda
model = model.cuda(args.gpu)
if args.adv_loss:
discriminators = [discriminator.cuda(args.gpu) for discriminator in discriminators]
if args.sm_loss:
srcs_centroids = [src_centroids.cuda(args.gpu) for src_centroids in srcs_centroids]
trgs_centroids = [trg_centroids.cuda(args.gpu) for trg_centroids in trgs_centroids]
# save best result into textfile
contents = [' '.join(sys.argv) + '\n',
"best accuracy: {:.2f}%\n".format(best_accuracy)]
for d_idx in range(num_target_domains):
best_accuracy_each_c = best_accuracies_each_c[d_idx]
best_mean_val_accuracy = best_mean_val_accuracies[d_idx]
best_total_val_accuracy = best_total_val_accuracies[d_idx]
contents.extend(["{}2{}\n".format(args.source_dataset, args.target_datasets[d_idx]),
"best total acc: {:.2f}%\n".format(100 * best_total_val_accuracy),
"best mean acc: {:.2f}%\n".format(100 * best_mean_val_accuracy),
'Best Accs: ' + ''.join(["{:.2f}% ".format(100 * c_val_acc)
for _, c_val_acc in best_accuracy_each_c]) + '\n'])
best_result_path = os.path.join('./output', '{}_best_result.txt'.format(
os.path.splitext(os.path.basename(__file__))[0]))
with open(best_result_path, 'a+') as f:
f.writelines(contents)
# logging best model results
for trg_idx in range(num_target_domains):
best_accuracy_each_c = best_accuracies_each_c[trg_idx]
best_total_val_accuracy = best_total_val_accuracies[trg_idx]
best_mean_val_accuracy = best_mean_val_accuracies[trg_idx]
logger.info(
'\nBest {} Accuracy of Each class\n'.format(args.target_datasets[trg_idx]) +
''.join(["{:<25}: {:.2f}%\n".format(c_name, 100 * c_val_acc)
for c_name, c_val_acc in best_accuracy_each_c]))
logger.info('Best Accs: ' + ''.join(["{:.2f}% ".format(100 * c_val_acc)
for _, c_val_acc in best_accuracy_each_c]))
logger.info('Best {} mean Accuracy: {:.2f}%'.format(args.target_datasets[trg_idx],
100 * best_mean_val_accuracy))
logger.info('Best {} Accuracy: {:.2f}%'.format(args.target_datasets[trg_idx],
100 * best_total_val_accuracy))
logger.info("Best model's Average Accuracy of targets: {:.2f}".format(100 * best_accuracy))
if args.save_ckpts:
# get options
options = io_utils.get_model_options_from_args(args, i_iter)
# dict to save
model_dict = {'model': model.cpu().state_dict()}
optimizer_dict = {'optimizer': optimizer.state_dict()}
if args.adv_loss:
optimizer_dict.update({'optimizer_D': optimizer_D.state_dict(),
'discriminators': [discriminator.cpu().state_dict()
for discriminator in discriminators]})
centroids_dict = {}
if args.sm_loss:
centroids_dict = {
'srcs_centroids': [src_centroids.cpu().state_dict() for src_centroids in srcs_centroids],
'trgs_centroids': [trg_centroids.cpu().state_dict() for trg_centroids in trgs_centroids]}
# save checkpoint
io_utils.save_checkpoints(args.save_dir, options, i_iter, model_dict, optimizer_dict, centroids_dict,
logger, best=False)
# ship to cuda
model = model.cuda(args.gpu)
if args.adv_loss:
discriminators = [discriminator.cuda(args.gpu) for discriminator in discriminators]
if args.sm_loss:
srcs_centroids = [src_centroids.cuda(args.gpu) for src_centroids in srcs_centroids]
trgs_centroids = [trg_centroids.cuda(args.gpu) for trg_centroids in trgs_centroids]
if args.use_tfboard:
writer.close()
logger.info('Total Time: {}'.format((datetime.datetime.now() - start_time)))
if __name__ == '__main__':
main()