-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
185 lines (166 loc) · 5.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import argparse
import time
import warnings
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from unsloth import FastLanguageModel
from src.autoregressive_sampling import autoregressive_sampling
from src.speculative_sampling import speculative_sampling
from src.utils import compute_metrics
warnings.filterwarnings("ignore")
def main(args: argparse.Namespace):
"""Entry point for the LLM inference script.
Args:
args (argparse.Namespace): Command line arguments
"""
DEVICE = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
# draft_model = AutoModelForCausalLM.from_pretrained(
# args.draft_model,
# torch_dtype=torch.float32,
# device_map=DEVICE,
# use_
# ).eval()
# target_model = AutoModelForCausalLM.from_pretrained(
# args.target_model,
# torch_dtype=torch.float32,
# device_map=DEVICE,
# ).eval()
# tokenizer = AutoTokenizer.from_pretrained(
# args.target_model,
# torch_dtype=torch.float32,
# device_map=DEVICE,
# )
draft_model, _ = FastLanguageModel.from_pretrained(
args.draft_model,
load_in_4bit=True,
)
target_model, tokenizer = FastLanguageModel.from_pretrained(
args.target_model,
load_in_4bit=True,
)
# disable KV cache
draft_model.config.use_cache = False
target_model.config.use_cache = False
prompt = "<|begin_of_text|>\n{input_str}".format(input_str=args.input_str)
input_ids: torch.Tensor = tokenizer.encode(args.input_str, return_tensors="pt").to(
DEVICE
) # type: ignore
if args.sampling_method == "autoregressive":
# warm-up run
print("\nStarting warm-up run")
autoregressive_sampling(
input_ids,
target_model,
N=50,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
)
print("Warm-up complete.")
print("\nAuto-regressive sampling:")
ar_output_ids = []
print(prompt)
torch.cuda.synchronize() if DEVICE == "cuda" else torch.mps.synchronize()
ar_start = time.perf_counter()
for token_id in autoregressive_sampling(
input_ids,
target_model,
N=args.N,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
):
ar_output_ids.append(token_id)
print(
tokenizer.decode(token_id, skip_special_tokens=True),
end="",
flush=True,
)
torch.cuda.synchronize() if DEVICE == "cuda" else torch.mps.synchronize()
ar_end = time.perf_counter()
ar_time = ar_end - ar_start
print(
f"\nTime taken: {ar_time} seconds, {len(ar_output_ids) / ar_time} tokens/s"
)
print("\n")
else:
# warm-up run
print("\nStarting warm-up run")
speculative_sampling(
input_ids,
draft_model,
target_model,
N=50,
K=args.K,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
)
print("Warm-up complete.")
print("\nSpeculative sampling:")
ss_output_ids = []
print(prompt)
torch.cuda.synchronize() if DEVICE == "cuda" else torch.mps.synchronize()
ss_start = time.perf_counter()
for token_id, speculated in speculative_sampling(
input_ids,
draft_model,
target_model,
N=args.N,
K=args.K,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
):
ss_output_ids.append(token_id)
if speculated:
print(
f"\033[92m{tokenizer.decode(token_id)}\033[0m", end="", flush=True
)
else:
print(
tokenizer.decode(token_id, skip_special_tokens=True),
end="",
flush=True,
)
torch.cuda.synchronize() if DEVICE == "cuda" else torch.mps.synchronize()
ss_end = time.perf_counter()
ss_time = ss_end - ss_start
print(
f"\nTime taken: {ss_time} seconds, {len(ss_output_ids) / ss_time} tokens/s"
)
print("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--target-model",
type=str,
default="gpt2-xl",
help="Target model",
required=True,
)
parser.add_argument("--draft-model", type=str, default="gpt2", help="Draft model")
parser.add_argument(
"--sampling-method",
type=str,
help="Sampling method",
choices={"autoregressive", "speculative"},
)
parser.add_argument("--input-str", type=str, help="Input string", required=True)
parser.add_argument(
"--N", type=int, default=40, help="Number of tokens to generate"
)
parser.add_argument(
"--K", type=int, default=4, help="Number of tokens to speculate"
)
parser.add_argument("--temperature", type=float, default=0, help="Temperature")
parser.add_argument("--top-k", type=int, default=0, help="Top k sampling")
parser.add_argument("--top-p", type=float, default=0, help="Top p sampling")
args = parser.parse_args()
main(args)