-
Notifications
You must be signed in to change notification settings - Fork 219
/
Copy pathNAIS.py
257 lines (227 loc) · 13.2 KB
/
NAIS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""
Reference: Xiangnan He et al., "NAIS: Neural Attentive Item Similarity Model for Recommendation." in TKDE2018
@author: wubin
"""
from model.AbstractRecommender import AbstractRecommender
import tensorflow as tf
import numpy as np
from time import time
from util import Learner,DataGenerator, Tool
from util.Logger import logger
from util import timer
from util.Tool import csr_to_user_dict
import pickle
from util import l2_loss
from util import pad_sequences
from util.DataIterator import DataIterator
class NAIS(AbstractRecommender):
def __init__(self, sess, dataset, conf):
super(NAIS, self).__init__(dataset, conf)
logger.info(conf)
self.pretrain = conf["pretrain"]
self.verbose = conf["verbose"]
self.batch_size = conf["batch_size"]
self.num_epochs = conf["epochs"]
self.weight_size = conf["weight_size"]
self.embedding_size = conf["embedding_size"]
self.data_alpha = conf["data_alpha"]
self.regs = conf["regs"]
self.is_pairwise = conf["is_pairwise"]
self.topK = conf["topk"]
self.lambda_bilinear = self.regs[0]
self.gamma_bilinear = self.regs[1]
self.eta_bilinear = self.regs[2]
self.alpha = conf["alpha"]
self.beta = conf["beta"]
self.num_negatives = conf["num_neg"]
self.learning_rate = conf["learning_rate"]
self.activation = conf["activation"]
self.loss_function = conf["loss_function"]
self.algorithm = conf["algorithm"]
self.learner = conf["learner"]
self.embed_init_method = conf["embed_init_method"]
self.weight_init_method = conf["weight_init_method"]
self.stddev = conf["stddev"]
self.pretrain_file = conf["pretrain_file"]
self.dataset = dataset
self.num_items = dataset.num_items
self.num_users = dataset.num_users
self.train_dict = csr_to_user_dict(self.dataset.train_matrix)
self.sess = sess
def _create_placeholders(self):
with tf.name_scope("input_data"):
self.user_input = tf.placeholder(tf.int32, shape=[None, None], name="user_input") # the index of users
self.num_idx = tf.placeholder(tf.float32, shape=[None], name="num_idx") # the number of items rated by users
self.item_input = tf.placeholder(tf.int32, shape=[None], name="item_input_pos") # the index of items
if self.is_pairwise.lower() == "true":
self.user_input_neg = tf.placeholder(tf.int32, shape=[None, None], name="user_input_neg")
self.item_input_neg = tf.placeholder(tf.int32, shape=[None], name="item_input_neg")
self.num_idx_neg = tf.placeholder(tf.float32, shape=[None], name="num_idx_neg")
else:
self.labels = tf.placeholder(tf.float32, shape=[None], name="labels")
def _create_variables(self,params=None):
with tf.name_scope("embedding"): # The embedding initialization is unknown now
if params is None:
embed_initializer = Tool.get_initializer(self.embed_init_method, self.stddev)
self.c1 = tf.Variable(embed_initializer([self.num_items, self.embedding_size]),
name='c1', dtype=tf.float32)
self.embedding_Q = tf.Variable(embed_initializer([self.num_items, self.embedding_size]),
name='embedding_Q', dtype=tf.float32)
self.bias = tf.Variable(tf.zeros(self.num_items), name='bias')
else:
self.c1 = tf.Variable = tf.Variable(params[0], name='c1',dtype=tf.float32)
self.embedding_Q = tf.Variable(params[1], name ='embedding_Q',dtype=tf.float32)
self.bias = tf.Variable(params[2], name = "bias",dtype=tf.float32)
self.c2 = tf.constant(0.0, tf.float32, [1, self.embedding_size], name='c2')
self.embedding_Q_ = tf.concat([self.c1, self.c2], axis=0, name='embedding_Q_')
# Variables for attention
weight_initializer = Tool.get_initializer(self.weight_init_method, self.stddev)
if self.algorithm == 0:
self.W = tf.Variable(weight_initializer([self.embedding_size,self.weight_size]),
name='Weights_for_MLP', dtype=tf.float32, trainable=True)
else:
self.W = tf.Variable(weight_initializer([2*self.embedding_size,self.weight_size]),
name='Weights_for_MLP', dtype=tf.float32, trainable=True)
self.b = tf.Variable(weight_initializer([1, self.weight_size]),
name='Bias_for_MLP', dtype=tf.float32, trainable=True)
self.h = tf.Variable(tf.ones([self.weight_size, 1]), name='H_for_MLP', dtype=tf.float32)
def _create_inference(self, user_input, item_input, num_idx):
with tf.name_scope("inference"):
embedding_q_ = tf.nn.embedding_lookup(self.embedding_Q_, user_input) # (b, n, e)
embedding_q = tf.expand_dims(tf.nn.embedding_lookup(self.embedding_Q, item_input), 1) # (b, 1, e)
if self.algorithm == 0:
embedding_p = self._attention_MLP(embedding_q_ * embedding_q, embedding_q_, num_idx)
else:
n = tf.shape(user_input)[1]
embedding_p = self._attention_MLP(tf.concat([embedding_q_, tf.tile(embedding_q, tf.stack([1, n, 1]))], 2),
embedding_q_,num_idx)
embedding_q = tf.reduce_sum(embedding_q, 1)
bias_i = tf.nn.embedding_lookup(self.bias, item_input)
coeff = tf.pow(num_idx, tf.constant(self.alpha, tf.float32, [1]))
output = coeff * tf.reduce_sum(embedding_p*embedding_q, 1) + bias_i
return embedding_q_, embedding_q, output
def _create_loss(self):
with tf.name_scope("loss"):
p1, q1, self.output = self._create_inference(self.user_input,self.item_input,self.num_idx)
if self.is_pairwise.lower() == "true":
_, q2, output_neg = self._create_inference(self.user_input_neg, self.item_input_neg, self.num_idx_neg)
self.result = self.output - output_neg
self.loss = Learner.pairwise_loss(self.loss_function, self.result) + \
self.lambda_bilinear * l2_loss(p1) + \
self.gamma_bilinear * l2_loss(q2, q1)
else:
self.loss = Learner.pointwise_loss(self.loss_function, self.labels, self.output) + \
self.lambda_bilinear * l2_loss(p1) + \
self.gamma_bilinear * l2_loss(q1)
def _create_optimizer(self):
with tf.name_scope("learner"):
self.optimizer = Learner.optimizer(self.learner, self.loss, self.learning_rate)
def build_graph(self):
self._create_placeholders()
try:
pretrained_params = []
with open(self.pretrain_file,"rb") as fin:
pretrained_params.append(pickle.load(fin, encoding="utf-8"))
with open(self.mlp_pretrain,"rb") as fin:
pretrained_params.append(pickle.load(fin, encoding="utf-8"))
logger.info("load pretrained params successful!")
except:
pretrained_params = None
logger.info("load pretrained params unsuccessful!")
self._create_variables(pretrained_params)
self._create_loss()
self._create_optimizer()
def _attention_MLP(self, q_, embedding_q_, num_idx):
with tf.name_scope("attention_MLP"):
b = tf.shape(q_)[0]
n = tf.shape(q_)[1]
r = (self.algorithm + 1)*self.embedding_size
MLP_output = tf.matmul(tf.reshape(q_, [-1, r]), self.W) + self.b # (b*n, e or 2*e) * (e or 2*e, w) + (1, w)
if self.activation == 0:
MLP_output = tf.nn.relu(MLP_output)
elif self.activation == 1:
MLP_output = tf.nn.sigmoid(MLP_output)
elif self.activation == 2:
MLP_output = tf.nn.tanh(MLP_output)
A_ = tf.reshape(tf.matmul(MLP_output, self.h), [b,n]) # (b*n, w) * (w, 1) => (None, 1) => (b, n)
# softmax for not mask features
exp_A_ = tf.exp(A_)
mask_mat = tf.sequence_mask(num_idx, maxlen = n, dtype=tf.float32) # (b, n)
exp_A_ = mask_mat * exp_A_
exp_sum = tf.reduce_sum(exp_A_, 1, keepdims=True) # (b, 1)
exp_sum = tf.pow(exp_sum, tf.constant(self.beta, tf.float32, [1]))
A = tf.expand_dims(tf.div(exp_A_, exp_sum), 2) # (b, n, 1)
return tf.reduce_sum(A * embedding_q_, 1)
def train_model(self):
logger.info(self.evaluator.metrics_info())
for epoch in range(1,self.num_epochs+1):
if self.is_pairwise.lower() == "true":
user_input, user_input_neg, num_idx_pos, num_idx_neg, item_input_pos,item_input_neg = \
DataGenerator._get_pairwise_all_likefism_data(self.dataset)
data_iter = DataIterator(user_input, user_input_neg, num_idx_pos,
num_idx_neg, item_input_pos, item_input_neg,
batch_size=self.batch_size, shuffle=True)
else:
user_input,num_idx,item_input,labels = \
DataGenerator._get_pointwise_all_likefism_data(self.dataset, self.num_negatives, self.train_dict)
data_iter = DataIterator(user_input, num_idx, item_input, labels, batch_size=self.batch_size, shuffle=True)
num_training_instances = len(user_input)
total_loss = 0.0
training_start_time = time()
if self.is_pairwise.lower() == "true":
for bat_users_pos, bat_users_neg, bat_idx_pos, bat_idx_neg, bat_items_pos, bat_items_neg in data_iter:
bat_users_pos = pad_sequences(bat_users_pos, value=self.num_items)
bat_users_neg = pad_sequences(bat_users_neg, value=self.num_items)
feed_dict = {self.user_input: bat_users_pos,
self.user_input_neg: bat_users_neg,
self.num_idx: bat_idx_pos,
self.num_idx_neg: bat_idx_neg,
self.item_input: bat_items_pos,
self.item_input_neg: bat_items_neg}
loss, _ = self.sess.run((self.loss, self.optimizer), feed_dict=feed_dict)
total_loss += loss
else:
for bat_users, bat_idx, bat_items, bat_labels in data_iter:
bat_users = pad_sequences(bat_users, value=self.num_items)
feed_dict = {self.user_input: bat_users,
self.num_idx: bat_idx,
self.item_input: bat_items,
self.labels: bat_labels}
loss, _ = self.sess.run((self.loss, self.optimizer), feed_dict=feed_dict)
total_loss += loss
logger.info("[iter %d : loss : %f, time: %f]" %(epoch,total_loss/num_training_instances,time()-training_start_time))
if epoch %self.verbose == 0:
logger.info("epoch %d:\t%s" % (epoch, self.evaluate()))
# save model
# params = self.sess.run([self.c1, self.embedding_Q, self.bias])
# with open("./pretrained/%s_epoch=%d_fism.pkl" % (self.dataset_name, self.num_epochs), "wb") as fout:
# pickle.dump(params, fout)
@timer
def evaluate(self):
return self.evaluator.evaluate(self)
def predict(self, user_ids, candidate_items_userids):
ratings = []
if candidate_items_userids is not None:
for u, eval_items_by_u in zip(user_ids, candidate_items_userids):
user_input = []
cand_items_by_u = self.train_dict[u]
num_idx = len(cand_items_by_u)
item_idx = np.full(len(eval_items_by_u), num_idx, dtype=np.int32)
user_input.extend([cand_items_by_u]*len(eval_items_by_u))
feed_dict = {self.user_input: user_input,
self.num_idx: item_idx,
self.item_input: eval_items_by_u}
ratings.append(self.sess.run(self.output, feed_dict=feed_dict))
else:
eval_items = np.arange(self.num_items)
for u in user_ids:
user_input = []
cand_items_by_u = self.train_dict[u]
num_idx = len(cand_items_by_u)
item_idx = np.full(self.num_items, num_idx, dtype=np.int32)
user_input.extend([cand_items_by_u]*self.num_items)
feed_dict = {self.user_input: user_input,
self.num_idx: item_idx,
self.item_input: eval_items}
ratings.append(self.sess.run(self.output, feed_dict=feed_dict))
return ratings