-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadv_train.py
497 lines (442 loc) · 20.3 KB
/
adv_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import os
import datetime
import random
import numpy as np
import tensorflow as tf
import pandas as pd
import sys
import math
import shutil
sys.path.append("..")
import codecs
from utils import *
from voc import Vocab, Tag
from adv_model import Model
import data_helpers
import logging
import cPickle
DIR = os.path.abspath(os.getcwd())
# ==================================================
print 'Generate words and characters need to be trained'
tf.flags.DEFINE_integer("vocab_size", 16169, "vocab_size(default)")
# Data parameters
tf.flags.DEFINE_integer("word_dim", 300, "word_dim")
tf.flags.DEFINE_integer("lstm_dim", 300, "lstm_dim")
tf.flags.DEFINE_integer("num_classes", 5, "num_classes")
tf.flags.DEFINE_integer("num_domain", 2, "num_domain")
tf.flags.DEFINE_boolean("embed_status", True, "embed_status")
# Model Hyperparameters[t]
tf.flags.DEFINE_float("l2_reg_lambda", 0.000, "L2 regularizaion lambda (default: 0.5)")
tf.flags.DEFINE_float("clip", 1, "gradient clip")
tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
tf.flags.DEFINE_string("conv_activation", "relu", "activation")
# Training parameters
tf.flags.DEFINE_string("vocab_path", os.path.join(DIR, 'model_dump/vocab.pickle'), "voc path")
tf.flags.DEFINE_string("CORPUS", '0,1', "the pair task")
tf.flags.DEFINE_integer("batch_size", 32, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 40)")
tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("seed", 1, "train_status")
tf.flags.DEFINE_string('log_dir', 'LOGs/log1', "log directory")
tf.flags.DEFINE_float("lr", 0.0001, "learning rate (default: 0.01)")
tf.flags.DEFINE_float("adv_rate", 0.1, "adv rate (default: 0.01)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.8)")
tf.flags.DEFINE_integer("lm_fw", 1, "fw")
tf.flags.DEFINE_integer("lm_bw", 1, "bw")
tf.flags.DEFINE_boolean("lstm_net", True, "use lstm or not")
tf.flags.DEFINE_integer("source_only", 0, "is_source_only")
tf.flags.DEFINE_float("lm_rate", 0.1, "language modeling scalar rate")
tf.flags.DEFINE_integer("topic_num", 100, "topic_num")
tf.flags.DEFINE_integer("use_gate", 1, "use gate to control the topic and local information")
tf.flags.DEFINE_integer("use_lm", 1, "use the language model or not")
tf.flags.DEFINE_integer("use_adv", 1, "use the adversarial training or not")
tf.flags.DEFINE_integer("decay_rate", 0, "decay the learning rate")
tf.flags.DEFINE_integer("lm_decay", 0, "decay the lm rate")
tf.flags.DEFINE_integer("early_stop", 3, "the epochs to early stop")
tf.flags.DEFINE_string("initializer", "he", "the initializer method")
tf.flags.DEFINE_integer("change_adv", 0, "change the adv method")
tf.flags.DEFINE_integer("change_lm", 0, "change the lm rate")
tf.flags.DEFINE_integer("change_lm_soft", 0, "change the lm rate softly")
tf.flags.DEFINE_integer("change_adv_soft", 0, "change the adv rate softly")
tf.flags.DEFINE_integer("adv_adjust", 0, "change the adv method2")
tf.flags.DEFINE_integer("adv_zero", 0, "change the adv method3")
tf.flags.DEFINE_integer("quick_evaluate", 1, "evaluate according to steps")
tf.flags.DEFINE_float("adv_gama", 0.5, "change the adv gama")
tf.flags.DEFINE_string('labeled_train', '', "train_data_dir")
tf.flags.DEFINE_string('restore_model', '', "model directory")
tf.flags.DEFINE_integer("k", 1, "train d step")
tf.flags.DEFINE_integer("lamda_type", 1, "adv_type")
tf.flags.DEFINE_float("lamda_v", 0.05, "adv_value")
tf.flags.DEFINE_integer("num_decode_steps", 1, "decoder_step")
# Misc
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
FLAGS = tf.flags.FLAGS
random.seed(FLAGS.seed)
np.random.seed(FLAGS.seed)
TAGS = Tag()
# init_embedding = np.random.rand(FLAGS.vocab_size, FLAGS.word_dim)
# init_embedding = init_embedding.astype(dtype=np.float32)
if FLAGS.embed_status is False:
init_embedding = None
vocab = cPickle.load(open(FLAGS.vocab_path))
else:
vocab = cPickle.load(open(FLAGS.vocab_path))
init_embedding = vocab[0]
FLAGS.vocab_size = init_embedding.shape[0]
print(type(init_embedding[0][0]))
if FLAGS.source_only == 1:
FLAGS.use_lm = 0
FLAGS.use_adv = 0
FLAGS.use_gate = 0
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items(), reverse=True):
print("{}={} \n".format(attr.upper(), value))
print("")
corpus_list = FLAGS.CORPUS.split(',')
assert(FLAGS.num_domain == len(corpus_list))
out_dir = os.path.abspath(os.path.join(os.path.curdir, FLAGS.log_dir))
# if os.path.exists(out_dir):
# shutil.rmtree(out_dir)
os.mkdir(out_dir)
# define log file
log_name = os.path.join(out_dir, 'Adv_train.log')
os.mknod(log_name)
logger = logging.getLogger('record')
hdlr = logging.FileHandler(log_name)
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
hdlr.setFormatter(formatter)
logger.addHandler(hdlr)
logger.setLevel(logging.INFO)
logger.info("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items(), reverse=True):
logger.info("{}={} \n".format(attr.upper(), value))
logger.info("")
print("Loading data...")
logger.info("Loading data...")
f_domain = codecs.open(os.path.join(out_dir, 'domain_correct'), 'w', 'utf-8')
# Load data
train_data_iterator = []
domain_data_iterator = []
dev_data_iterator = []
test_data_iterator = []
dev_df = []
test_df = []
print("Loading data...")
logger.info("Loading data...")
for i in range(len(corpus_list)):
paper_i = corpus_list[i]
# TRAIN_FILE = DIR + '/data/' + str(paper_i) + '/train_mt.csv'
TRAIN_FILE = DIR + '/data/' + str(paper_i) + '/labeled_train_mt.csv'
DEV_FILE = DIR + '/data/' + str(paper_i) + '/dev_mt.csv'
TEST_FILE = DIR + '/data/' + str(paper_i) + '/test_mt.csv'
DOMAIN_TRAIN = DIR + '/data/' + str(paper_i) + '/domain_train_mt.csv'
# labeled data is only in the source domain
if i == 0:
train_data_iterator.append(data_helpers.DataIterator(pd.read_csv(TRAIN_FILE), is_train=True))
domain_data_iterator.append(data_helpers.DataIterator(pd.read_csv(DOMAIN_TRAIN), is_train=True)) #Domain
logger.info('Domain ' + str(i) + str(domain_data_iterator[i].total))
if i == 0:
# only use source dev data to select model
dev_df.append(pd.read_csv(DEV_FILE))
dev_data_iterator.append(data_helpers.DataIterator(dev_df[0], is_train=False))
if i == 1:
# final test on the target data
test_df.append(pd.read_csv(TEST_FILE))
test_data_iterator.append(data_helpers.DataIterator(test_df[0], is_train=False))
session_conf = tf.ConfigProto(allow_soft_placement=True,
log_device_placement=False)
session_conf.gpu_options.allow_growth = True
def train_d_step(model, s_x, s_dom, s_seq_len, s_topic, t_x, t_dom, t_seq_len, t_topic, lr):
feed_dict = {
model.s_x: s_x,
model.s_dom: s_dom,
model.s_seq_len: s_seq_len,
model.s_topic_input: s_topic,
model.t_x: t_x,
model.t_dom: t_dom,
model.t_seq_len: t_seq_len,
model.t_topic_input: t_topic,
model.lr: lr,
model.dropout_keep_prob: FLAGS.dropout_keep_prob,
}
_, d_num, d_step, d_loss, merge_summary_d = sess.run(
[model.train_d_op, model.domain_correct_num, model.d_global_step, model.d_loss, model.merge_summary_domain],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print("d***{}: step {}, loss {:g}".format(time_str, d_step, d_loss))
return d_step, merge_summary_d, d_num
def train_g_step(model, s_x, s_y, s_dom, s_seq_len, s_topic, t_x, t_dom, t_seq_len, t_topic, t_fw_x, t_fw_y, t_bw_x, t_bw_y, lm_seq_len, lr, beta, lamda):
feed_dict = {
model.s_x: s_x,
model.s_y: s_y,
model.s_dom: s_dom,
model.s_seq_len: s_seq_len,
model.s_topic_input: s_topic,
model.t_x: t_x,
model.t_dom: t_dom,
model.t_seq_len: t_seq_len,
model.t_topic_input: t_topic,
model.lr: lr,
model.lamda: lamda,
model.beta: beta,
model.t_lm_fw_x: t_fw_x,
model.t_lm_fw_y: t_fw_y,
model.t_lm_bw_x: t_bw_x,
model.t_lm_bw_y: t_bw_y,
model.t_lm_seq_len: lm_seq_len,
model.dropout_keep_prob: FLAGS.dropout_keep_prob
}
_, g_step, g_loss, lr_summary, merge_summary_g = sess.run(
[model.train_g_op, model.g_global_step, model.g_loss, model.lr_summary, model.merge_summary_g],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print("g***{}: step {}, loss {:g}".format(time_str, g_step, g_loss))
return g_step, lr_summary, merge_summary_g
def evaluate_word_PRF(all_words, pred, true, test=False):
res = []
all_hit = 0
all_pred = 0
all_true = 0
for abstract_i in range(len(all_words)):
predict, true_ = get_phrase(all_words[abstract_i], pred[abstract_i], true[abstract_i])
# print(all_words[abstract_i])
# print(pred[abstract_i])
# print(true[abstract_i])
# print(predict)
# print(true_)
hit_num, pred_num, true_num = get_prf_num(predict, true_)
all_hit += hit_num
all_pred += pred_num
all_true += true_num
res.append({'hit_num': hit_num, 'pred_num': pred_num, 'true_num': true_num})
precision = -1.0
recall = -1.0
f1 = -1.0
if all_pred != 0:
precision = 1.0 * all_hit / all_pred
if all_true != 0:
recall = 1.0 * all_hit / all_true
if precision > 0 and recall > 0:
f1 = 2.0 * (precision * recall) / (precision + recall)
print 'P: ', precision
print 'R: ', recall
print 'F: ', f1
if test:
return precision, recall, f1
else:
return f1
def fast_all_predict(model, batch_iterator):
"""
every batch is an abstract
"""
y_pred, y_true = [], []
all_words = []
while 1:
real_words, x_batch, y_batch, seq_len_batch, topic_vec = batch_iterator.next_test_batch(50)
real_words = [words.split(' ') for words in real_words]
all_words += real_words
# infer predictions
if FLAGS.use_gate:
feed_dict = {
model.t_x: x_batch,
model.t_seq_len: seq_len_batch,
model.dropout_keep_prob: 1.0,
model.t_topic_input: topic_vec
}
else:
feed_dict = {
model.t_x: x_batch,
model.t_seq_len: seq_len_batch,
model.dropout_keep_prob: 1.0
}
unary_scores, transition_params = sess.run(
[model.unary_scores, model.transition_params], feed_dict)
y_pred_, y_true_ = [], []
for unary_scores_, y_, seq_len_ in zip(unary_scores, y_batch, seq_len_batch):
# remove padding
unary_scores_ = unary_scores_[:seq_len_]
# Compute the highest scoring sequence.
viterbi_sequence, _ = tf.contrib.crf.viterbi_decode(
unary_scores_, transition_params)
y_pred_.append(viterbi_sequence)
y_true_.append(y_[:seq_len_].tolist())
y_pred += y_pred_
y_true += y_true_
if batch_iterator.pos == 0:
break
return all_words, y_pred, y_true
def final_test_step(model, iterator, test=False):
all_words, y_true, y_pred = fast_all_predict(model, iterator)
if test:
print 'Test:'
else:
print 'Dev'
return all_words, y_pred, y_true
def get_batch_lm(batch_x, seq_x):
row_length = len(batch_x)
seq_length = len(batch_x[0])
batch_x_new = np.zeros((row_length, FLAGS.num_decode_steps + 1), dtype=int)
batch_x_new[:, 1:seq_length+ 1] = batch_x
eos_idx = vocab[1]['<eos>']
col = np.zeros((row_length, 1))
col[:, :] = eos_idx
batch_x_new[:, 0:1] = col
batch_y_new = np.zeros((row_length, FLAGS.num_decode_steps + 1), dtype=int)
batch_y_new[:, 0:seq_length] = batch_x
for row, col in enumerate(seq_x):
batch_y_new[row, col] = eos_idx
batch_lm_x = batch_x_new
batch_lm_y = batch_y_new
return batch_lm_x, batch_lm_y, seq_x + 1
def get_lm_data(targetx_batch, targetseq_len_batch):
target_seq_len_batch = np.zeros(len(targetseq_len_batch), dtype=int)
for i in range(len(targetseq_len_batch)):
target_seq_len_batch[i] = min(targetseq_len_batch[i], FLAGS.num_decode_steps)
target_x_batch = targetx_batch[:, 0:FLAGS.num_decode_steps]
lm_fw_x, lm_fw_y, seq_x = get_batch_lm(target_x_batch, target_seq_len_batch)
batch_x_r = np.zeros((len(target_x_batch), len(target_x_batch[0])))
for i, j in enumerate(target_seq_len_batch):
batch_x_r[i, 0:j] = np.flip(target_x_batch[i, 0:j], 0)
lm_bw_x, lm_bw_y, seq_x = get_batch_lm(batch_x_r, target_seq_len_batch)
return lm_fw_x, lm_fw_y, lm_bw_x, lm_bw_y, target_seq_len_batch
# t_ul_x, _, t_ul_dom, t_ul_len, t_ul_topic = \
# domain_data_iterator[1].next_batch(FLAGS.batch_size, round=1, classifier=True)
# lm_fw_x, lm_fw_y, lm_bw_x, lm_bw_y, seq_x = get_lm_data(t_ul_x, t_ul_len)
#
# print(t_ul_x[0])
# print(lm_fw_x[0])
# print(lm_bw_x[0])
#
# print(len(lm_fw_x[0]))
# print(len(lm_fw_y[0]))
# exit()
def get_var():
tvars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
if FLAGS.use_adv:
logger.info('all_op')
for i in tvars:
logger.info(i)
with tf.Graph().as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
session_conf.gpu_options.allow_growth = True
sess = tf.Session(config=session_conf)
tf.set_random_seed(FLAGS.seed)
with sess.as_default():
# build model
initializer = tf.contrib.layers.xavier_initializer(seed=FLAGS.seed)
with tf.variable_scope('model', reuse=None, initializer=initializer):
model = Model(batch_size=FLAGS.batch_size,
vocab_size=FLAGS.vocab_size,
word_dim=FLAGS.word_dim,
lstm_dim=FLAGS.lstm_dim,
num_classes=FLAGS.num_classes,
clip=FLAGS.clip,
l2_reg_lambda=FLAGS.l2_reg_lambda,
init_embedding=init_embedding,
lstm_net=FLAGS.lstm_net,
num_domain=FLAGS.num_domain,
lm_fw=FLAGS.lm_fw,
lm_bw=FLAGS.lm_bw,
topic_num=FLAGS.topic_num,
use_gate=FLAGS.use_gate,
use_lm=FLAGS.use_lm,
use_adv=FLAGS.use_adv,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(','))),
num_filters=FLAGS.num_filters,
conv_activation=FLAGS.conv_activation,
num_decode_steps=FLAGS.num_decode_steps
)
get_var()
# Output directory for models
logger.info("Writing to {}\n".format(out_dir))
sess.run(tf.global_variables_initializer())
log_dir = os.path.abspath(os.path.join(out_dir, "log"))
adv_train_writer = tf.summary.FileWriter(log_dir + '/adv', sess.graph)
# Checkpoint directory. TensorFlow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
filename = 'task' + str('_') + str(corpus_list[1])
checkpoint_all = os.path.join(checkpoint_dir, filename)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
else:
logger.info('remove previous checkpoints')
shutil.rmtree(checkpoint_dir)
if FLAGS.restore_model != '':
tvars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='model/embedding') + \
tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='model/encoder') + \
tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='model/softmax') + \
tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='model/loss/crf_layer')
if FLAGS.use_gate:
tvars += tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='model/gate')
saver = tf.train.Saver(tvars)
latest_cp = tf.train.latest_checkpoint(FLAGS.restore_model)
saver.restore(sess, latest_cp)
else:
saver = tf.train.Saver()
logger.info('Task_{}-{} Training starts'.format(corpus_list[0], corpus_list[1]))
best_accuary = 0.0
best_epoch = 0
best_step = 0
test_p, test_r, test_f = 0.0, 0.0, 0.0
source_id = 0
target_id = 1
num_steps = int(math.floor(train_data_iterator[source_id].total * 1.0 / FLAGS.batch_size))
for epoch in range(FLAGS.num_epochs):
train_data_iterator[source_id].shuffle()
p = float(epoch) / FLAGS.num_epochs
for step_i in range(num_steps):
progress = epoch + (step_i + 0.0) / num_steps
if FLAGS.lamda_type == 1:
if FLAGS.adv_zero == 0:
if epoch == 0:
lamda = 0
else:
lamda = 2.0 / (1.0 + np.exp(-FLAGS.adv_gama * (progress - 1))) - 1.0
else:
lamda = 2.0 / (1.0 + np.exp(-FLAGS.adv_gama * progress)) - 1.0
elif FLAGS.lamda_type == 2:
lamda = FLAGS.lamda_v
elif FLAGS.lamda_type == 3:
lamda = 2. / (1. + np.exp(-10 * p)) - 1
# train d step
for d_k in range(int(FLAGS.k)):
s_ul_x, _, s_ul_dom, s_ul_len, s_ul_topic = \
domain_data_iterator[source_id].next_batch(FLAGS.batch_size / 2, round=0, classifier=True)
t_ul_x, _, t_ul_dom, t_ul_len, t_ul_topic = \
domain_data_iterator[target_id].next_batch(FLAGS.batch_size / 2, round=1, classifier=True)
d_step, merge_summary_d, d_num = train_d_step(model, s_ul_x, s_ul_dom, s_ul_len, s_ul_topic, t_ul_x,
t_ul_dom, t_ul_len, t_ul_topic, FLAGS.lr)
adv_train_writer.add_summary(merge_summary_d, d_step)
f_domain.write(str(d_step) + ' ' + str(d_num) + '\n')
# train g step
s_l_x, s_l_y, s_l_dom, s_l_len, s_l_topic = \
train_data_iterator[source_id].next_batch(FLAGS.batch_size, round=0, classifier=True)
t_ul_x, _, t_ul_dom, t_ul_len, t_ul_topic = \
domain_data_iterator[target_id].next_batch(FLAGS.batch_size, round=1, classifier=True, labeled=False)
lm_fw_x, lm_fw_y, lm_bw_x, lm_bw_y, lm_seq_len = get_lm_data(t_ul_x, t_ul_len)
g_step, lr_summary, merge_summary_g = train_g_step(model, s_l_x, s_l_y, s_l_dom, s_l_len, s_l_topic, t_ul_x,
t_ul_dom, t_ul_len, t_ul_topic, lm_fw_x, lm_fw_y,
lm_bw_x, lm_bw_y, lm_seq_len, FLAGS.lr, FLAGS.lm_rate, lamda)
adv_train_writer.add_summary(merge_summary_g, g_step)
adv_train_writer.add_summary(lr_summary, g_step)
if (epoch == 0 and step_i == 0) or (g_step % FLAGS.evaluate_every == 0 and FLAGS.quick_evaluate):
dev_words, yp, yt = final_test_step(model, dev_data_iterator[source_id])
tmpacc = evaluate_word_PRF(dev_words, yp, yt)
if best_accuary < tmpacc:
best_accuary = tmpacc
best_step = step_i
best_epoch = epoch
test_words, yp_test, yt_test = final_test_step(model, test_data_iterator[0], test=True)
test_p, test_r, test_f = evaluate_word_PRF(test_words, yp_test, yt_test, test=True)
logger.info('epoch {} step {} f_{} p_{} r_{} valid_f{}'.format(epoch, step_i, test_f, test_p, test_r, best_accuary))
path = saver.save(sess, checkpoint_all)
logger.info("Saved model checkpoint to {}\n".format(path))
print(num_steps, best_epoch, best_step, test_p, test_r, test_f, best_accuary)
if epoch - best_epoch >= FLAGS.early_stop:
print('early stoping')
break
logger.info('final epoch_{} step_{} f_{} p_{} r_{}'.format(best_epoch, best_step, test_f, test_p, test_r))