-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstreamlit_test_catch.py
198 lines (166 loc) Β· 6.15 KB
/
streamlit_test_catch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import streamlit as st
import os
import autogen
import base64
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.chains import ConversationalRetrievalChain
import io
import sys
import tempfile
import openai
import multiprocessing
import autogen.agentchat.user_proxy_agent as upa
config_list = [
{
"model": "gpt-4",
"api_key": st.secrets["OPENAI_API_KEY"]
}
]
gpt4_api_key = config_list[0]["api_key"]
os.environ['OPENAI_API_KEY'] = st.secrets["OPENAI_API_KEY"]
openai.api_key = st.secrets["OPENAI_API_KEY"]
class OutputCapture:
def __init__(self):
self.contents = []
def write(self, data):
self.contents.append(data)
def flush(self):
pass
def get_output_as_string(self):
return ''.join(self.contents)
class ExtendedUserProxyAgent(upa.UserProxyAgent):
def __init__(self, *args, log_file="interaction_log.txt", **kwargs):
super().__init__(*args, **kwargs)
self.log_file = log_file
def log_interaction(self, message):
with open(self.log_file, "a") as f:
f.write(message + "\n")
def get_human_input(self, *args, **kwargs):
human_input = super().get_human_input(*args, **kwargs)
self.log_interaction(f"Human input: {human_input}")
return human_input
def build_vector_store(pdf_path, chunk_size=1000):
loaders = [PyPDFLoader(pdf_path)]
docs = []
for l in loaders:
docs.extend(l.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size)
docs = text_splitter.split_documents(docs)
vectorstore = Chroma(
collection_name="full_documents",
embedding_function=OpenAIEmbeddings()
)
vectorstore.add_documents(docs)
return vectorstore
def setup_qa_chain(vectorstore):
qa = ConversationalRetrievalChain.from_llm(
OpenAI(temperature=0),
vectorstore.as_retriever(),
memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True)
)
return qa
def get_image_as_base64_string(path):
with open(path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode()
def answer_question(question, qa_chain):
response = qa_chain({"question": question})
return response["answer"]
def initiate_task(user_proxy, assistant, user_question):
user_proxy.initiate_chat(
assistant,
message= user_question
)
def initiate_task_process(queue, tmp_path, user_question):
vectorstore = build_vector_store(tmp_path)
qa = setup_qa_chain(vectorstore)
def answer_question(question):
response = qa({"question": question})
return response["answer"]
llm_config={
"request_timeout": 600,
"seed": 42,
"config_list": config_list,
"temperature": 0,
"functions": [
{
"name": "answer_question",
"description": "Answer any questions in relation to the paper",
"parameters": {
"type": "object",
"properties": {
"question": {
"type": "string",
"description": "The question to ask in relation to the paper",
}
},
"required": ["question"],
},
}
],
}
# create an AssistantAgent instance named "assistant"
assistant = autogen.AssistantAgent(
name="assistant",
llm_config=llm_config,
)
# create a UserProxyAgent instance named "user_proxy"
user_proxy = autogen.UserProxyAgent(
name="user_proxy",
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
code_execution_config={"work_dir": "."},
llm_config=llm_config,
system_message="""Reply TERMINATE if the task has been solved at full satisfaction.
Otherwise, reply CONTINUE, or the reason why the task is not solved yet.""",
function_map={"answer_question": answer_question}
)
output_capture = OutputCapture()
sys.stdout = output_capture
initiate_task(user_proxy, assistant, user_question)
queue.put(output_capture.get_output_as_string())
def app():
st.title("NexaAgent 0.0.1")
# Sidebar introduction
st.sidebar.header("About NexaAgent 0.0.1")
st.sidebar.markdown("""
π **Introducing NexaAgent 0.0.1!**
A highly efficient PDF tool for all your needs.
π Upload any PDF, no matter its size or the task type.
β
Guaranteed accuracy, significantly reducing any discrepancies.
π§ Empowered by:
- **AutoGen** π οΈ
- **LangChain** π
- **chromadb** ποΈ
""")
image_path = "1.png"
st.sidebar.image(image_path, use_column_width=True)
# Create left and right columns
col1, col2 = st.columns(2)
with col1:
# Upload PDF file
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf"])
if uploaded_file:
with st.spinner("Processing PDF..."):
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
tmp.write(uploaded_file.getvalue())
tmp_path = tmp.name
# User input for question
user_question = st.text_area("Enter your task:", height=300)
if user_question:
with st.spinner("Fetching the answer..."):
# δ½Ώη¨θΏη¨ζ₯ζ§θ‘ε―θ½εΌειθ――η代η
queue = multiprocessing.Queue()
process = multiprocessing.Process(target=initiate_task_process, args=(queue, tmp_path, user_question))
process.start()
process.join()
# δ»ιεδΈθ·εη»ζ
captured_output = queue.get()
col2.text_area("", value=captured_output, height=600)
if __name__ == "__main__":
st.set_page_config(layout="wide")
app()