-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathutil_graphs.py
170 lines (133 loc) · 6 KB
/
util_graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import tensorflow as tf
import keras.backend as K
def xyxy2cxcywh(xyxy):
"""
Convert [x1 y1 x2 y2] box format to [cx cx w h] format.
"""
return tf.concat((0.5 * (xyxy[:, 0:2] + xyxy[:, 2:4]), xyxy[:, 2:4] - xyxy[:, 0:2]), axis=-1)
def cxcywh2xyxy(xywh):
"""
Convert [cx cy w y] box format to [x1 y1 x2 y2] format.
"""
return tf.concat((xywh[:, 0:2] - 0.5 * xywh[:, 2:4], xywh[:, 0:2] + 0.5 * xywh[:, 2:4]), axis=-1)
def prop_box_graph(boxes, scale, width, height):
"""
Compute proportional box coordinates.
Box centers are fixed. Box w and h scaled by scale.
"""
prop_boxes = xyxy2cxcywh(boxes)
prop_boxes = tf.concat((prop_boxes[:, :2], prop_boxes[:, 2:] * scale), axis=-1)
prop_boxes = cxcywh2xyxy(prop_boxes)
x1 = tf.floor(prop_boxes[:, 0])
y1 = tf.floor(prop_boxes[:, 1])
x2 = tf.math.ceil(prop_boxes[:, 2])
y2 = tf.math.ceil(prop_boxes[:, 3])
width = tf.cast(width, tf.float32)
height = tf.cast(height, tf.float32)
x2 = tf.cast(tf.clip_by_value(x2, 1, width), tf.int32)
y2 = tf.cast(tf.clip_by_value(y2, 1, height), tf.int32)
x1 = tf.cast(tf.clip_by_value(x1, 0, tf.cast(x2, tf.float32) - 1), tf.int32)
y1 = tf.cast(tf.clip_by_value(y1, 0, tf.cast(y2, tf.float32) - 1), tf.int32)
return x1, y1, x2, y2
def prop_box_graph_2(boxes, scale, width, height):
"""
Compute proportional box coordinates.
Box centers are fixed. Box w and h scaled by scale.
"""
prop_boxes = xyxy2cxcywh(boxes)
prop_boxes = tf.concat((prop_boxes[:, :2], prop_boxes[:, 2:] * scale), axis=-1)
prop_boxes = cxcywh2xyxy(prop_boxes)
# (n, 1)
x1 = tf.floor(prop_boxes[:, 0:1])
y1 = tf.floor(prop_boxes[:, 1:2])
x2 = tf.math.ceil(prop_boxes[:, 2:3])
y2 = tf.math.ceil(prop_boxes[:, 3:4])
width = tf.cast(width, tf.float32)
height = tf.cast(height, tf.float32)
x2 = tf.cast(tf.clip_by_value(x2, 1, width), tf.int32)
y2 = tf.cast(tf.clip_by_value(y2, 1, height), tf.int32)
x1 = tf.cast(tf.clip_by_value(x1, 0, tf.cast(x2, tf.float32) - 1), tf.int32)
y1 = tf.cast(tf.clip_by_value(y1, 0, tf.cast(y2, tf.float32) - 1), tf.int32)
return x1, y1, x2, y2
def trim_zeros_graph(boxes, name='trim_zeros'):
"""
Often boxes are represented with matrices of shape [N, 4] and are padded with zeros.
This removes zero boxes.
Args:
boxes: [N, 4] matrix of boxes.
name: name of tensor
Returns:
"""
non_zeros = tf.cast(tf.reduce_sum(tf.abs(boxes), axis=1), tf.bool)
boxes = tf.boolean_mask(boxes, non_zeros, name=name)
return boxes, non_zeros
def bbox_transform_inv(boxes, deltas, mean=None, std=None):
"""
Applies deltas (usually regression results) to boxes (usually anchors).
Before applying the deltas to the boxes, the normalization that was previously applied (in the generator) has to be removed.
The mean and std are the mean and std as applied in the generator. They are unnormalized in this function and then applied to the boxes.
Args
boxes: np.array of shape (B, N, 4), where B is the batch size, N the number of boxes and 4 values for (x1, y1, x2, y2).
deltas: np.array of same shape as boxes. These deltas (d_x1, d_y1, d_x2, d_y2) are a factor of the width/height.
mean: The mean value used when computing deltas (defaults to [0, 0, 0, 0]).
std: The standard deviation used when computing deltas (defaults to [0.2, 0.2, 0.2, 0.2]).
Returns
A np.array of the same shape as boxes, but with deltas applied to each box.
The mean and std are used during training to normalize the regression values (networks love normalization).
"""
if mean is None:
mean = [0, 0, 0, 0]
if std is None:
std = [0.2, 0.2, 0.2, 0.2]
width = boxes[:, :, 2] - boxes[:, :, 0]
height = boxes[:, :, 3] - boxes[:, :, 1]
x1 = boxes[:, :, 0] + (deltas[:, :, 0] * std[0] + mean[0]) * width
y1 = boxes[:, :, 1] + (deltas[:, :, 1] * std[1] + mean[1]) * height
x2 = boxes[:, :, 2] + (deltas[:, :, 2] * std[2] + mean[2]) * width
y2 = boxes[:, :, 3] + (deltas[:, :, 3] * std[3] + mean[3]) * height
pred_boxes = K.stack([x1, y1, x2, y2], axis=2)
return pred_boxes
def shift(shape, stride, anchors):
"""
Produce shifted anchors based on shape of the map and stride size.
Args
shape: Shape to shift the anchors over. (h,w)
stride: Stride to shift the anchors with over the shape.
anchors: The anchors to apply at each location.
Returns
shifted_anchors: (fh * fw * num_anchors, 4)
"""
shift_x = (K.arange(0, shape[1], dtype=K.floatx()) + K.constant(0.5, dtype=K.floatx())) * stride
shift_y = (K.arange(0, shape[0], dtype=K.floatx()) + K.constant(0.5, dtype=K.floatx())) * stride
shift_x, shift_y = tf.meshgrid(shift_x, shift_y)
shift_x = K.reshape(shift_x, [-1])
shift_y = K.reshape(shift_y, [-1])
# (4, fh * fw)
shifts = K.stack([
shift_x,
shift_y,
shift_x,
shift_y
], axis=0)
# (fh * fw, 4)
shifts = K.transpose(shifts)
number_anchors = K.shape(anchors)[0]
# number of base points = fh * fw
k = K.shape(shifts)[0]
# (k=fh*fw, num_anchors, 4)
shifted_anchors = K.reshape(anchors, [1, number_anchors, 4]) + K.cast(K.reshape(shifts, [k, 1, 4]), K.floatx())
# (k * num_anchors, 4)
shifted_anchors = K.reshape(shifted_anchors, [k * number_anchors, 4])
return shifted_anchors
def resize_images(images, size, method='bilinear', align_corners=False):
""" See https://www.tensorflow.org/versions/master/api_docs/python/tf/image/resize_images .
Args
method: The method used for interpolation. One of ('bilinear', 'nearest', 'bicubic', 'area').
"""
methods = {
'bilinear': tf.image.ResizeMethod.BILINEAR,
'nearest': tf.image.ResizeMethod.NEAREST_NEIGHBOR,
'bicubic': tf.image.ResizeMethod.BICUBIC,
'area': tf.image.ResizeMethod.AREA,
}
return tf.image.resize_images(images, size, methods[method], align_corners)