-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparsing_log.py
438 lines (380 loc) · 14.1 KB
/
parsing_log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
from sklearn.linear_model import SGDClassifier
from sklearn.cross_validation import KFold
from sklearn.metrics import roc_auc_score
from sklearn.preprocessing import Imputer
from sklearn.decomposition import PCA
from datetime import date
from sklearn.linear_model import LogisticRegression
__author__ = 'YBeer'
classifier = LogisticRegression()
classifier_log = SGDClassifier(loss='log', penalty='elasticnet', l1_ratio=0.6, n_iter=50)
classifier_dummy = GradientBoostingClassifier()
classifier_full = [GradientBoostingClassifier(loss='deviance', learning_rate=0.2, n_estimators=150, max_depth=5,
max_features=0.4),
RandomForestClassifier(max_depth=12, max_features=0.25, n_estimators=150)]
log_reg = LogisticRegression()
"""
Remove comlumns with only 1 answer
"""
# dataset = pd.DataFrame.from_csv("train.csv")
# print dataset.shape
#
# columns = dataset.columns.values.tolist()
#
# # check column data type
# data_types = dataset.dtypes
#
# bad_columns = 0
# good_columns = []
#
# # check number of values in each column
# for i, col_name in enumerate(columns):
# # print col_name
# # print data_types[i]
# # print dataset[col_name].value_counts().shape[0]
# if dataset[col_name].value_counts().shape[0] <= 1:
# bad_columns += 1
# else:
# good_columns.append(col_name)
# print 'number of columns with only 1 value: ', bad_columns
#
# # filter bad columns
# dataset = dataset[good_columns]
# dataset.to_csv("train_col_filt.csv")
#
# dataset_test = pd.DataFrame.from_csv("test.csv")
# dataset_test = dataset_test[good_columns[:-1]]
#
# dataset_test.to_csv("test_col_filt.csv")
# print 'written filtered dataframe to file'
"""
Remove duplicate comlumns
"""
# dataset = pd.DataFrame.from_csv("train_col_filt.csv")
#
# col_n = dataset.shape[1]
# interval = 100
#
# col_names = dataset.columns.values.tolist()
# col_types = dataset.dtypes
#
# dataset_splited = []
# for i in range(0, col_n, interval):
# if col_n > i + interval:
# dataset_temp = dataset[col_names[i: (i + interval)]]
# print i, ' before: ', dataset_temp.shape
#
# dataset_temp = dataset_temp.T.drop_duplicates().T
# print i, ' after: ', dataset_temp.shape
# dataset_splited.append(dataset_temp)
# else:
# dataset_temp = dataset[col_names[i:]]
# print i, ' before: ', dataset_temp.shape
#
# dataset_temp = dataset_temp.T.drop_duplicates().T
# print i, ' after: ', dataset_temp.shape
# dataset_splited.append(dataset_temp)
# dataset = pd.concat(dataset_splited, axis=1)
#
# del dataset_splited, dataset_temp
#
# col_names = dataset.columns.values.tolist()
#
# dataset.to_csv("train_col_filt_2.csv")
#
# dataset_test = pd.DataFrame.from_csv("test_col_filt.csv")
# dataset_test = dataset_test[col_names[:-1]]
# dataset_test.to_csv("test_col_filt_2.csv")
"""
change categorical variables to dummy variables, meanwhile ignoring variables with more than 20 values
"""
# get file with only relevant rows
print 'reading train dataset'
dataset = pd.DataFrame.from_csv("train_col_filt_2.csv")
print 'reading test dataset'
dataset_test = pd.DataFrame.from_csv("test_col_filt_2.csv")
good_columns = list(dataset.columns.values)
n = dataset.shape[0]
y = np.array(dataset)[:, -1].ravel()
y = np.array(y).astype('int')
dictionary = {'JAN': 1, 'FEB': 2, 'MAR': 3, 'APR': 4, 'MAY': 5, 'JUN': 6, 'JUL': 7, 'AUG': 8, 'SEP': 9, 'OCT': 10,
'NOV': 11, 'DEC': 12}
# check column data type
data_types = dataset.dtypes
dummies = []
dummies_test = []
# # add good date channels
# print 'starting to convert date channels'
#
# date_col = ['VAR_0073']
#
# for col in date_col:
# X = dataset[col]
# X = np.array(X)
#
# X_test = dataset_test[col]
# X_test = np.array(X_test)
#
# # split datetime
# X_split = np.ones((n, 3)) * (-1)
# for i in range(n):
# if str(X[i]) != 'nan':
# cur_datetime = X[i]
# cur_date = date(2000 + int(cur_datetime[5:7]), dictionary[cur_datetime[2:5]], int(cur_datetime[:2]))
# X_split[i, 0] = cur_date.year
# X_split[i, 1] = cur_date.month
# X_split[i, 2] = cur_date.day
#
# X_split_test = np.ones((n, 3)) * (-1)
# for i in range(n):
# if str(X_test[i]) != 'nan':
# cur_datetime = X_test[i]
# cur_date = date(2000 + int(cur_datetime[5:7]), dictionary[cur_datetime[2:5]], int(cur_datetime[:2]))
# X_split_test[i, 0] = cur_date.year
# X_split_test[i, 1] = cur_date.month
# X_split_test[i, 2] = cur_date.day
#
# # convert to DF
# X_cols = ['day', 'month', 'year']
# X_split = pd.DataFrame(X_split, columns=X_cols)
# X_split_test = pd.DataFrame(X_split_test, columns=X_cols)
#
# # get dummy variables
# new_dummy = pd.get_dummies(X_split).astype('int')
# columns_dummy = new_dummy.columns.values.tolist()
# for j in range(len(columns_dummy)):
# columns_dummy[j] = col + '_' + str(columns_dummy[j])
# new_dummy.columns = columns_dummy
#
# new_dummy_test = pd.get_dummies(X_split_test).astype('int')
# columns_dummy_test = new_dummy_test.columns.values.tolist()
# for j in range(len(columns_dummy)):
# columns_dummy_test[j] = col + '_' + str(columns_dummy_test[j])
# new_dummy_test.columns = columns_dummy
#
# dummies.append(new_dummy)
# dummies_test.append(new_dummy_test)
vectorized_log = np.vectorize(lambda k: np.log(1 + k))
print 'starting to convert to dummy variables'
for i in range(len(good_columns) - 1):
# use getdummies in order to convert categorial to workable numerical table
col_dif_values = dataset[good_columns[i]].value_counts().shape[0]
# maximum number of columns viable to create dummies
print good_columns[i], ' has ', col_dif_values, ' columns'
if data_types[i] == 'object':
if col_dif_values <= 10:
print 'working'
new_dummy = pd.get_dummies(dataset[good_columns[i]]).astype('int')
classifier_dummy.fit(np.array(new_dummy), y)
self_predict = classifier_dummy.predict_proba(np.array(new_dummy))[:, 1].ravel()
self_predict = np.array(self_predict)
roc_auc = roc_auc_score(y, self_predict)
print 'auc = ', roc_auc
if roc_auc > 0.55:
print 'adding dummy to data'
columns_dummy = new_dummy.columns.values.tolist()
for j in range(len(columns_dummy)):
columns_dummy[j] = good_columns[i] + '_' + str(columns_dummy[j])
new_dummy.columns = columns_dummy
new_dummy_test = pd.get_dummies(dataset_test[good_columns[i]]).astype('int')
columns_dummy_test = new_dummy_test.columns.values.tolist()
for j in range(len(columns_dummy)):
columns_dummy_test[j] = good_columns[i] + '_' + str(columns_dummy_test[j])
new_dummy_test.columns = columns_dummy_test
# remove categorical column
dummies.append(new_dummy)
dummies_test.append(new_dummy_test)
dataset = dataset.drop(good_columns[i], 1)
dataset_test = dataset_test.drop(good_columns[i], 1)
if data_types[i] == 'int64' or data_types[i] == 'float64':
print 'numerical, checking if log(n+1) regress better than n'
log_col = np.array(dataset[good_columns[i]]).reshape((n, 1))
# impotate
imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
imp.fit(log_col)
log_col = imp.transform(log_col)
classifier_log.fit(log_col, y)
self_predict = classifier_log.predict_proba(log_col)[:, 1].ravel()
self_predict = np.array(self_predict)
roc_auc = roc_auc_score(y, self_predict)
print 'auc = ', roc_auc
log_col = vectorized_log(log_col)
classifier_log.fit(log_col, y)
self_predict = classifier_log.predict_proba(log_col)[:, 1].ravel()
self_predict = np.array(self_predict)
roc_auc_log = roc_auc_score(y, self_predict)
print 'log\'s auc = ', roc_auc_log
if roc_auc_log > roc_auc:
print 'switch to log data'
dataset[good_columns[i]] = log_col
dataset = pd.concat(dummies + [dataset], axis=1)
dataset_test = pd.concat(dummies_test + [dataset_test], axis=1)
columns_dummy = dataset.columns.values.tolist()
columns_dummy_test = dataset_test.columns.values.tolist()
# add only common columns for train and test
columns_dummy_and = []
for col in columns_dummy:
if col in columns_dummy_test:
columns_dummy_and.append(col)
dataset = dataset[columns_dummy_and + ['target']]
dataset_test = dataset_test[columns_dummy_and]
print 'total of ', len(columns_dummy_and), ' columns'
print 'finished converting dummies'
dataset.to_csv("train_col_log_dummy.csv")
dataset_test.to_csv("test_col_log_dummy.csv")
del dataset_test, dataset
print 'written dataframe with converted str to dummy to file'
"""
preprocessing pipe for univariante results
"""
# get file with all numerics
print 'loading dataset with dummies from file'
dataset = pd.DataFrame.from_csv("train_col_dummy.csv")
print 'changing to array'
dataset = np.array(dataset)
X = dataset[:, :-1]
y = np.array(dataset)[:, -1]
# impotate
print 'impotating'
imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
imp.fit(X)
X = imp.transform(X)
# standardizing results
print 'standardizing results'
scaler = preprocessing.StandardScaler().fit(X)
X = scaler.transform(X)
"""
univariante evaluation
"""
# CV
cv_n = 4
kf = KFold(dataset.shape[0], n_folds=cv_n, shuffle=True)
print 'start univariante evaluation'
X_train_list = []
X_test_list = []
y_train_list = []
y_test_list = []
for train_index, test_index in kf:
X_train, X_test = X[train_index, :], X[test_index, :]
y_train, y_test = y[train_index].ravel(), y[test_index].ravel()
X_train_list.append(X_train)
X_test_list.append(X_test)
y_train_list.append(y_train)
y_test_list.append(y_test)
uni_results = np.ones((dataset.shape[1], cv_n))
for i in range(X.shape[1]):
if not i % 50:
print 'var ', i
for j in range(cv_n):
# train machine learning
x = X_train_list[j][:, i].reshape((X_train_list[j].shape[0], 1))
classifier.fit(x, y_train_list[j])
x_test = X_test_list[j][:, i].reshape((X_test_list[j].shape[0], 1))
# predict
class_pred = classifier.predict_proba(x_test)[:, 1]
# evaluate
uni_results[i, j] = roc_auc_score(y_test_list[j], class_pred)
print uni_results
print np.mean(uni_results, axis=1)
uni_results = np.mean(uni_results, axis=1)
uni_results = pd.Series(uni_results)
print uni_results.value_counts()
uni_results.to_csv("univar_AUC_log.csv")
"""
use only columns over threshhold
"""
print 'loading univariante results'
uni_results = pd.read_csv("univar_AUC.csv", index_col=0, names=["index", "AUC"])
uni_thresh = 0.3
print 'threshold is ', uni_thresh
regression_matrix_indices = []
for i in range(len(uni_results) - 1):
if uni_results['AUC'][i] > uni_thresh:
regression_matrix_indices.append(i)
print len(regression_matrix_indices)
print regression_matrix_indices
print 'loading dataset'
dataset = pd.DataFrame.from_csv("train_col_dummy.csv")
print 'changing to array'
dataset = np.array(dataset)
X = dataset[:, regression_matrix_indices]
y = dataset[:, -1]
# impotate
print 'impotating'
imp = Imputer(missing_values='NaN', strategy='mean', axis=1)
imp.fit(X)
X = imp.transform(X)
# standardizing results
print 'standardizing results'
scaler = preprocessing.StandardScaler().fit(X)
X = scaler.transform(X)
# PCA
# print 'PCA results'
# pca_decomp = PCA(n_components=100)
# X = pca_decomp.fit_transform(X)
# print X.shape
"""
full model CV
"""
# CV
cv_n = 4
kf = KFold(dataset.shape[0], n_folds=cv_n, shuffle=True)
print 'start full model evaluation'
for i in range(len(classifier_full)):
auc = []
for train_index, test_index in kf:
X_train, X_test = X[train_index, :], X[test_index, :]
y_train, y_test = y[train_index].ravel(), y[test_index].ravel()
# train machine learning
classifier_full[i].fit(X_train, y_train)
# predict
class_pred = classifier_full[i].predict_proba(X_test)[:, 1]
# evaluate
auc.append(roc_auc_score(y_test, class_pred))
print i, ' auc is: ', np.mean(auc)
# get log regression params
print 'preparing ensemble coefficients'
log_pred = np.ones((X.shape[0], 2))
for train_index, test_index in kf:
X_train, X_test = X[train_index, :], X[test_index, :]
y_train, y_test = y[train_index].ravel(), y[test_index].ravel()
for i in range(len(classifier_full)):
# train machine learning
classifier_full[i].fit(X_train, y_train)
# predict
log_pred[test_index, i] = classifier_full[i].predict_proba(X_test)[:, 1]
log_reg.fit(log_pred, y.ravel())
print log_reg.intercept_, log_reg.coef_, roc_auc_score(y.ravel(), log_reg.predict_proba(log_pred)[:, 1].ravel())
"""
Evaluate test file
"""
print 'fitting full data'
# fitting full model
X_train = X
y_train = y
for i in range(len(classifier_full)):
classifier_full[i].fit(X_train, y_train)
dataset_test = pd.DataFrame.from_csv("test_col_dummy.csv")
dataset_test = np.array(dataset_test)
X_test = dataset_test[:, regression_matrix_indices]
# preprocess
X_test = imp.transform(X_test)
X_test = scaler.transform(X_test)
# X_test = PCA.transform(X_test)
# predict to ensemble
class_pred = np.ones((X_test.shape[0], 2))
class_self_pred = np.ones((X_train.shape[0], 2))
for i in range(len(classifier_full)):
class_pred[:, i] = classifier_full[i].predict_proba(X_test)[:, 1]
class_self_pred[:, i] = classifier_full[i].predict_proba(X_train)[:, 1]
# fit log
ensemble_pred = log_reg.predict_proba(class_pred)
submission_file = pd.DataFrame.from_csv("sample_submission.csv")
submission_file['target'] = ensemble_pred
submission_file.to_csv("rf_dummy_univar_" + str(uni_thresh) + "ensemble.csv")
submission_file['target'] = class_pred[:, 0]
submission_file.to_csv("rf_dummy_univar_" + str(uni_thresh) + "ensemble_ref.csv")