-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathaffectnet.py
318 lines (237 loc) · 11.8 KB
/
affectnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import sys
import glob
from tqdm import tqdm
import argparse
from PIL import Image
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.utils.data as data
from torchvision import transforms, datasets
from networks.dan import DAN
eps = sys.float_info.epsilon
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--aff_path', type=str, default='datasets/AfectNet/', help='AfectNet dataset path.')
parser.add_argument('--batch_size', type=int, default=256, help='Batch size.')
parser.add_argument('--lr', type=float, default=0.0001, help='Initial learning rate for adam.')
parser.add_argument('--workers', default=8, type=int, help='Number of data loading workers.')
parser.add_argument('--epochs', type=int, default=40, help='Total training epochs.')
parser.add_argument('--num_head', type=int, default=4, help='Number of attention head.')
parser.add_argument('--num_class', type=int, default=8, help='Number of class.')
return parser.parse_args()
class AffectNet(data.Dataset):
def __init__(self, aff_path, phase, use_cache = True, transform = None):
self.phase = phase
self.transform = transform
self.aff_path = aff_path
if use_cache:
cache_path = os.path.join(aff_path,'affectnet.csv')
if os.path.exists(cache_path):
df = pd.read_csv(cache_path)
else:
df = self.get_df()
df.to_csv(cache_path)
else:
df = self.get_df()
self.data = df[df['phase'] == phase]
self.file_paths = self.data.loc[:, 'img_path'].values
self.label = self.data.loc[:, 'label'].values
_, self.sample_counts = np.unique(self.label, return_counts=True)
# print(f' distribution of {phase} samples: {self.sample_counts}')
def get_df(self):
train_path = os.path.join(self.aff_path,'train_set/')
val_path = os.path.join(self.aff_path,'val_set/')
data = []
for anno in glob.glob(train_path + 'annotations/*_exp.npy'):
idx = os.path.basename(anno).split('_')[0]
img_path = os.path.join(train_path,f'images/{idx}.jpg')
label = int(np.load(anno))
data.append(['train',img_path,label])
for anno in glob.glob(val_path + 'annotations/*_exp.npy'):
idx = os.path.basename(anno).split('_')[0]
img_path = os.path.join(val_path,f'images/{idx}.jpg')
label = int(np.load(anno))
data.append(['val',img_path,label])
return pd.DataFrame(data = data,columns = ['phase','img_path','label'])
def __len__(self):
return len(self.file_paths)
def __getitem__(self, idx):
path = self.file_paths[idx]
image = Image.open(path).convert('RGB')
label = self.label[idx]
if self.transform is not None:
image = self.transform(image)
return image, label
class AffinityLoss(nn.Module):
def __init__(self, device, num_class=8, feat_dim=512):
super(AffinityLoss, self).__init__()
self.num_class = num_class
self.feat_dim = feat_dim
self.gap = nn.AdaptiveAvgPool2d(1)
self.device = device
self.centers = nn.Parameter(torch.randn(self.num_class, self.feat_dim).to(device))
def forward(self, x, labels):
x = self.gap(x).view(x.size(0), -1)
batch_size = x.size(0)
distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_class) + \
torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_class, batch_size).t()
distmat.addmm_(x, self.centers.t(), beta=1, alpha=-2)
classes = torch.arange(self.num_class).long().to(self.device)
labels = labels.unsqueeze(1).expand(batch_size, self.num_class)
mask = labels.eq(classes.expand(batch_size, self.num_class))
dist = distmat * mask.float()
dist = dist / self.centers.var(dim=0).sum()
loss = dist.clamp(min=1e-12, max=1e+12).sum() / batch_size
return loss
class PartitionLoss(nn.Module):
def __init__(self, ):
super(PartitionLoss, self).__init__()
def forward(self, x):
num_head = x.size(1)
if num_head > 1:
var = x.var(dim=1).mean()
## add eps to avoid empty var case
loss = torch.log(1+num_head/(var+eps))
else:
loss = 0
return loss
class ImbalancedDatasetSampler(data.sampler.Sampler):
def __init__(self, dataset, indices: list = None, num_samples: int = None):
self.indices = list(range(len(dataset))) if indices is None else indices
self.num_samples = len(self.indices) if num_samples is None else num_samples
df = pd.DataFrame()
df["label"] = self._get_labels(dataset)
df.index = self.indices
df = df.sort_index()
label_to_count = df["label"].value_counts()
weights = 1.0 / label_to_count[df["label"]]
self.weights = torch.DoubleTensor(weights.to_list())
# self.weights = self.weights.clamp(min=1e-5)
def _get_labels(self, dataset):
if isinstance(dataset, datasets.ImageFolder):
return [x[1] for x in dataset.imgs]
elif isinstance(dataset, torch.utils.data.Subset):
return [dataset.dataset.imgs[i][1] for i in dataset.indices]
else:
raise NotImplementedError
def __iter__(self):
return (self.indices[i] for i in torch.multinomial(self.weights, self.num_samples, replacement=True))
def __len__(self):
return self.num_samples
def run_training():
args = parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = True
model = DAN(num_class=args.num_class, num_head=args.num_head)
model.to(device)
data_transforms = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.RandomAffine(20, scale=(0.8, 1), translate=(0.2, 0.2)),
], p=0.7),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
transforms.RandomErasing(),
])
# train_dataset = AffectNet(args.aff_path, phase = 'train', transform = data_transforms) # loading dynamically
train_dataset = datasets.ImageFolder(f'{args.aff_path}/train', transform = data_transforms) # loading statically
if args.num_class == 7: # ignore the 8-th class
idx = [i for i in range(len(train_dataset)) if train_dataset.imgs[i][1] != 7]
train_dataset = data.Subset(train_dataset, idx)
print('Whole train set size:', train_dataset.__len__())
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size = args.batch_size,
num_workers = args.workers,
sampler=ImbalancedDatasetSampler(train_dataset),
shuffle = False,
pin_memory = True)
data_transforms_val = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
# val_dataset = AffectNet(args.aff_path, phase = 'val', transform = data_transforms_val) # loading dynamically
val_dataset = datasets.ImageFolder(f'{args.aff_path}/val', transform = data_transforms_val) # loading statically
if args.num_class == 7: # ignore the 8-th class
idx = [i for i in range(len(val_dataset)) if val_dataset.imgs[i][1] != 7]
val_dataset = data.Subset(val_dataset, idx)
print('Validation set size:', val_dataset.__len__())
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size = args.batch_size,
num_workers = args.workers,
shuffle = False,
pin_memory = True)
criterion_cls = torch.nn.CrossEntropyLoss().to(device)
criterion_af = AffinityLoss(device, num_class=args.num_class)
criterion_pt = PartitionLoss()
params = list(model.parameters()) + list(criterion_af.parameters())
optimizer = torch.optim.Adam(params,args.lr,weight_decay = 0)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma = 0.6)
best_acc = 0
for epoch in tqdm(range(1, args.epochs + 1)):
running_loss = 0.0
correct_sum = 0
iter_cnt = 0
model.train()
for (imgs, targets) in train_loader:
iter_cnt += 1
optimizer.zero_grad()
imgs = imgs.to(device)
targets = targets.to(device)
out,feat,heads = model(imgs)
loss = criterion_cls(out,targets) + criterion_af(feat,targets) + criterion_pt(heads)
loss.backward()
optimizer.step()
running_loss += loss
_, predicts = torch.max(out, 1)
correct_num = torch.eq(predicts, targets).sum()
correct_sum += correct_num
acc = correct_sum.float() / float(train_dataset.__len__())
running_loss = running_loss/iter_cnt
tqdm.write('[Epoch %d] Training accuracy: %.4f. Loss: %.3f. LR %.6f' % (epoch, acc, running_loss,optimizer.param_groups[0]['lr']))
with torch.no_grad():
running_loss = 0.0
iter_cnt = 0
bingo_cnt = 0
sample_cnt = 0
model.eval()
for imgs, targets in val_loader:
imgs = imgs.to(device)
targets = targets.to(device)
out,feat,heads = model(imgs)
loss = criterion_cls(out,targets) + criterion_af(feat,targets) + criterion_pt(heads)
running_loss += loss
iter_cnt+=1
_, predicts = torch.max(out, 1)
correct_num = torch.eq(predicts,targets)
bingo_cnt += correct_num.sum().cpu()
sample_cnt += out.size(0)
running_loss = running_loss/iter_cnt
scheduler.step()
acc = bingo_cnt.float()/float(sample_cnt)
acc = np.around(acc.numpy(),4)
best_acc = max(acc,best_acc)
tqdm.write("[Epoch %d] Validation accuracy:%.4f. Loss:%.3f" % (epoch, acc, running_loss))
tqdm.write("best_acc:" + str(best_acc))
if args.num_class == 7 and acc > 0.65:
torch.save({'iter': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),},
os.path.join('checkpoints', "affecnet7_epoch"+str(epoch)+"_acc"+str(acc)+".pth"))
tqdm.write('Model saved.')
elif args.num_class == 8 and acc > 0.62:
torch.save({'iter': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),},
os.path.join('checkpoints', "affecnet8_epoch"+str(epoch)+"_acc"+str(acc)+".pth"))
tqdm.write('Model saved.')
if __name__ == "__main__":
run_training()