-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
303 lines (269 loc) · 11.9 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 30 20:22:26 2020
@author: krishna, Iuthing
"""
import sys
import os
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from sklearn.metrics import accuracy_score
from tqdm import tqdm
from hyperpyyaml import load_hyperpyyaml
import logging
import json
import shutil
import time
from collections import OrderedDict
import datetime
from torchaudio import transforms as T
from torchaudio_augmentations import *
from modules.mfcc import MFCC_Delta
from modules.utils import speech_collate, count_parameters
from modules.speech_dataset import LIDDataset, FamilyLIDDataset
from modules.contrastive_loss import SupConLoss
torch.multiprocessing.set_sharing_strategy('file_system')
logging.basicConfig(level=logging.INFO, format='%(asctime)s [%(levelname)s] - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
if len(sys.argv) == 1:
sys.argv.append("config.yaml")
with open(sys.argv[1], "r") as f:
config = load_hyperpyyaml(f)
now = datetime.datetime.now()
savepath = os.path.join('ckpt', f'{now.strftime("%m%d_%H%M")}_{config["save_path"]}')
logging.info(f'Checkpoints will be saved to {savepath}.')
os.makedirs(savepath, exist_ok=True)
shutil.copy(os.path.abspath(sys.argv[1]), os.path.abspath(savepath))
shutil.copy(os.path.abspath(__file__), os.path.abspath(savepath))
writer = SummaryWriter(log_dir=f'{savepath}/log')
scaler = torch.cuda.amp.GradScaler()
torch.backends.cudnn.benchmark = True
# Data related
transforms = Compose([
RandomApply([PolarityInversion()], p=0.2),
RandomApply([Noise()], p=0.2),
RandomApply([Gain()], p=0.2),
RandomApply([HighLowPass(sample_rate=16000)], p=0.4),
RandomApply([Delay(sample_rate=16000)], p=0.4),
RandomApply([PitchShift(
n_samples=80000,
sample_rate=16000
)], p=0.4),
RandomApply([Reverb(sample_rate=16000)], p=0.4)
])
# transforms = None
dataset_train = config['trainset'](manifest=config["training_meta"], mode='train',
min_dur_sec=config["min_dur_sec"], wf_sec=config["sample_sec"], transforms=transforms, feature=config['feature'])
dataset_val = LIDDataset(manifest=config["validation_meta"], mode='train',
min_dur_sec=config["min_dur_sec"], wf_sec=config["sample_sec"], feature=config['feature'])
dataloader_train = DataLoader(dataset_train, batch_size=config["train"]["batch_size"],
num_workers=config["train"]["num_workers"], shuffle=True,
collate_fn=speech_collate) #, pin_memory=True)
dataloader_val = DataLoader(dataset_val, batch_size=config["val"]["batch_size"],
num_workers=config["val"]["num_workers"], shuffle=False,
collate_fn=speech_collate) #, pin_memory=True)
# Model related
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
with open(config["class_ids"], "r") as f:
class_ids = json.load(f)
num_class = len(class_ids)
logging.debug(f"num_class: {num_class}")
if isinstance(config['feature'], T.MelSpectrogram):
input_dim = config["n_mels"]
elif isinstance(config['feature'], T.Spectrogram):
input_dim = config["n_fft"]//2 + 1
elif isinstance(config['feature'], MFCC_Delta):
input_dim = config["n_mfcc"] * 3
else:
raise TypeError("config['feature'] must be one of Spectrogram, MelSpectrogram or MFCC_Delta")
logging.debug(f"input_dim: {input_dim}")
model = config['model'](input_dim, num_class)
logging.debug(model)
logging.info(f'Training model: {model.__class__.__name__}.')
logging.info(f'Model parameters: {count_parameters(model):,}')
# use multi-GPU if available
if torch.cuda.device_count() > 1:
logging.info(f"Using {torch.cuda.device_count()} GPUs!")
model = nn.DataParallel(model)
elif torch.cuda.device_count() == 1:
logging.info(f"Using 1 GPU!")
else:
logging.info(f'Using CPU!')
model.to(device)
optimizer = config["optimizer"](model.parameters())
if config['CE'] == True:
criterion = nn.CrossEntropyLoss()
if config['SupCon'] == True:
criterion_aux = SupConLoss()
# handle checkpoint
start_epoch = -1
start_step = -1
if config['checkpoint'] is not None:
ckpt = torch.load(config['checkpoint'])
try:
if torch.cuda.device_count() > 1:
model.module.load_state_dict(ckpt['model'])
else:
model.load_state_dict(ckpt['model'])
optimizer.load_state_dict(ckpt['optimizer'])
except:
# load without the last layer
logging.info(f'Model shape does not fit. Trying loading without the last layer.')
del ckpt['model']['output.weight']
del ckpt['model']['output.bias']
if torch.cuda.device_count() > 1:
model.module.load_state_dict(ckpt['model'], strict=False)
else:
model.load_state_dict(ckpt['model'], strict=False)
optimizer.load_state_dict(ckpt['optimizer'])
start_epoch = ckpt['epoch']
start_step = ckpt['step']
logging.info(f'Start training from epoch {start_epoch+1} with checkpoint "{config["checkpoint"]}".')
del ckpt
else:
logging.info(f'Start training from scratch.')
def train(dataloader_train, epoch):
train_loss_list = []
full_preds = []
full_gts = []
model.train()
start_time = time.time()
pbar = tqdm(dataloader_train, dynamic_ncols=True)
for i, sample_batched in enumerate(pbar):
if len(train_loss_list) > 0:
pbar.set_description(desc=f"epoch {epoch}, loss={np.average(train_loss_list):.4f}")
logging.debug(f"Taking {time.time() - start_time} seconds to load 1 batch")
feats = torch.stack(sample_batched[0])
labels = torch.cat(sample_batched[1])
bsz = labels.shape[0]
if len(sample_batched) >= 3:
families = torch.cat(sample_batched[2])
families = families.to(device)
if len(sample_batched) == 4:
feats_aug = torch.stack(sample_batched[3])
feats = torch.cat((feats,feats_aug), dim=0)
labels = torch.cat((labels, labels))
feats, labels = feats.to(device), labels.to(device)
feats.requires_grad = True
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=False):
pred_logits, emb = model(feats) # x_vec = B x Dim
# CE loss
if config['CE'] == True:
loss = criterion(pred_logits, labels)
# SupCon
if config['SupCon'] == True:
x_vecs_nviews = torch.stack(torch.split(emb, [bsz, bsz], dim=0), dim=1)
# loss_aux = criterion_aux(x_vecs_nviews, labels=labels[:bsz], family=families)
# loss_aux = criterion_aux(x_vecs_nviews, labels=families)
loss_aux = criterion_aux(x_vecs_nviews, labels[:bsz])
elif config['CE_Fam'] == True:
families = torch.cat((families, families))
loss_aux = criterion(emb, families)
if (config['CE'] and config['SupCon']) or (config['CE'] and config['CE_Fam']) == True:
loss += float(config['Alpha']) * loss_aux
elif config['SupCon'] == True:
loss = loss_aux
# pred_logits, emb = model(feats) # x_vec = B x Dim
# # CE loss
# loss = criterion(pred_logits, labels)
# # SupCon
# x_vecs_nviews = torch.stack(torch.split(emb, [bsz, bsz], dim=0), dim=1)
# loss_aux = criterion_aux(x_vecs_nviews, labels[:bsz])
# loss += 0.5*loss_aux
if not np.isnan(loss.detach().cpu().numpy()):
# loss.backward()
scaler.scale(loss).backward()
# optimizer.step()
scaler.step(optimizer)
scaler.update()
train_loss_list.append(loss.item())
else:
logging.warning('Training loss is nan. Skip updating model with this batch.')
predictions = np.argmax(pred_logits.detach().cpu().numpy(), axis=1)
for pred in predictions:
full_preds.append(pred)
for lab in labels.detach().cpu().numpy():
full_gts.append(lab)
if config['save_step'] is not None:
if ((i+1) % config["save_step"] == 0):
mean_loss = np.mean(np.asarray(train_loss_list))
model_save_path = os.path.join(savepath, f'ckpt_{epoch}_{i}_{mean_loss:.4}')
save_checkpoint(model, optimizer, epoch, model_save_path, step=i)
start_time = time.time()
mean_acc = accuracy_score(full_gts, full_preds)
mean_loss = np.mean(np.asarray(train_loss_list))
writer.add_scalar("Loss/train", mean_loss, global_step=epoch)
writer.add_scalar("Accuracy/train", mean_acc, global_step=epoch)
logging.info(f'Total training loss {mean_loss:.4} and training accuracy {mean_acc:.4} after {epoch} epochs.')
def validation(dataloader_val, epoch, best_loss, old_best):
model.eval()
with torch.no_grad():
val_loss_list = []
full_preds = []
full_gts = []
for i_batch, sample_batched in enumerate(tqdm(dataloader_val, desc=f"epoch {epoch} val: ", dynamic_ncols=True)):
features = torch.stack(sample_batched[0])
labels = torch.cat(sample_batched[1])
features, labels = features.to(device), labels.to(device)
pred_logits, x_vec = model(features)
# CE loss
loss = criterion(pred_logits, labels)
val_loss_list.append(loss.item())
# train_acc_list.append(accuracy)
predictions = np.argmax(pred_logits.detach().cpu().numpy(), axis=1)
for pred in predictions:
full_preds.append(pred)
for lab in labels.detach().cpu().numpy():
full_gts.append(lab)
mean_acc = accuracy_score(full_gts, full_preds)
mean_loss = np.mean(np.asarray(val_loss_list))
writer.add_scalar("Loss/validation", mean_loss, global_step=epoch)
writer.add_scalar("Accuracy/validation", mean_acc, global_step=epoch)
logging.info(
f'Total validation loss {mean_loss:.4} and validation accuracy {mean_acc:.4} after {epoch} epochs.')
if config["save_epoch"] is not None and config["save_step"] is None:
if ((epoch+1) % config["save_epoch"] == 0):
model_save_path = os.path.join(savepath, f'ckpt_{epoch}_{mean_loss:.4}')
save_checkpoint(model, optimizer, epoch, model_save_path)
if mean_loss < best_loss:
if old_best is not None:
os.remove(os.path.join(savepath, old_best))
return mean_loss, None
elif mean_loss < best_loss:
filename = f'ckpt_best_{epoch}_{mean_loss:.4}'
model_save_path = os.path.join(savepath, filename)
save_checkpoint(model, optimizer, epoch, model_save_path)
if old_best is not None:
os.remove(os.path.join(savepath, old_best))
new_best = filename
return mean_loss, new_best
return mean_loss, old_best
def save_checkpoint(model, opt, epoch, save_path, step=-1):
logging.info(f'Saving model to {save_path}.')
if step != -1:
epoch -= 1
if torch.cuda.device_count() > 1:
state_dict = {'model': model.module.state_dict(), 'optimizer': opt.state_dict(), 'epoch': epoch, 'step': step}
else:
state_dict = {'model': model.state_dict(), 'optimizer': opt.state_dict(), 'epoch': epoch, 'step': step}
torch.save(state_dict, save_path)
if __name__ == '__main__':
best_val_loss = 100
old_best = None
for epoch in range(config["num_epochs"]):
if epoch <= start_epoch:
continue
train(dataloader_train, epoch)
val_loss, new_best = validation(dataloader_val, epoch, best_val_loss, old_best)
old_best = new_best
if val_loss < best_val_loss:
best_val_loss = val_loss
writer.flush()
writer.close()