-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
123 lines (84 loc) · 4.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Brief: Train a densenet for image classification
# Data: 24/Aug./2017
# E-mail: huyixuanhyx@gmail.com
# License: Apache 2.0
# By: Yeephycho @ Hong Kong
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import os
import net.densenet as densenet
import config as config
import data_provider.data_provider as data_provider
FLAGS = tf.app.flags.FLAGS
TRAINING_SET_SIZE = FLAGS.TRAINING_SET_SIZE
BATCH_SIZE = FLAGS.BATCH_SIZE
starter_learning_rate = FLAGS.INIT_LEARNING_RATE
exp_decay_steps = FLAGS.DECAY_STEPS
exp_decay_rate = FLAGS.DECAY_RATE
def densenet_train():
image_batch_placeholder = tf.placeholder(tf.float32, shape=[None, 224, 224, 3])
label_batch_placeholder = tf.placeholder(tf.float32, shape=[None, 5])
if_training_placeholder = tf.placeholder(tf.bool, shape=[])
image_batch, label_batch, filename_batch = data_provider.feed_data(if_random = True, if_training = True)
if_training = tf.Variable(True, name='if_training', trainable=False)
logits = densenet.densenet_inference(image_batch_placeholder, if_training_placeholder, dropout_prob=0.7)
loss = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(labels=label_batch_placeholder, logits=logits))
#loss = tf.losses.mean_squared_error(labels=label_batch_placeholder, predictions=logits)
tf.summary.scalar('loss', loss) # create a summary for training loss
regularzation_loss = sum(tf.get_collection("regularzation_loss"))
tf.summary.scalar('regularzation_loss', regularzation_loss)
total_loss = regularzation_loss + loss
tf.summary.scalar('total_loss', total_loss)
global_step = tf.Variable(0, name='global_step', trainable=False)
learning_rate = tf.train.exponential_decay(learning_rate=starter_learning_rate,
global_step=global_step,
decay_steps=exp_decay_steps,
decay_rate=exp_decay_rate,
staircase=True)
tf.summary.scalar('learning_rate', learning_rate)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss=total_loss, global_step=global_step)
summary_op = tf.summary.merge_all() # merge all summaries into a single "operation" which we can execute in a session
saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
summary_writer = tf.summary.FileWriter("./log", sess.graph)
sess.run(tf.global_variables_initializer())
checkpoint = tf.train.get_checkpoint_state("./models")
if(checkpoint != None):
tf.logging.info("Restoring full model from checkpoint file %s",checkpoint.model_checkpoint_path)
saver.restore(sess, checkpoint.model_checkpoint_path)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess = sess)
check_points = int(TRAINING_SET_SIZE/BATCH_SIZE)
for epoch in range(250):
for check_point in range(check_points):
image_batch_train, label_batch_train, filename_train = sess.run([image_batch, label_batch, filename_batch])
_, training_loss, _global_step, summary = sess.run([train_step, loss, global_step, summary_op],
feed_dict={image_batch_placeholder: image_batch_train,
label_batch_placeholder: label_batch_train,
if_training_placeholder: if_training})
if(bool(check_point%50 == 0) & bool(check_point != 0)):
print(_)
print("batch: ", check_point + epoch * check_points)
print("training loss: ", training_loss)
summary_writer.add_summary(summary, _global_step)
saver.save(sess, "./models/densenet.ckpt", _global_step)
coord.request_stop()
coord.join(threads)
sess.close()
return 0
def main():
tf.reset_default_graph()
densenet_train()
if __name__ == '__main__':
main()
# weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
# print("")
# for w in weights:
# shp = w.get_shape().as_list()
# print("- {} shape:{} size:{}".format(w.name, shp, np.prod(shp)))
# print("")