-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathnasnet_inference.py
66 lines (56 loc) · 2.23 KB
/
nasnet_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import re
import os
import sys
import tarfile
import argparse
import datetime
import numpy as np
import tensorflow as tf
from six.moves import urllib
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
model = "./inference/frozen_nasnet_large.pb"
model_graph = tf.Graph()
with model_graph.as_default():
with tf.gfile.FastGFile(model, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
input_layer = model_graph.get_tensor_by_name("input:0")
output_layer = model_graph.get_tensor_by_name('final_layer/predictions:0')
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
inference_session = tf.Session(graph = model_graph, config=config)
def decode_image(jpeg_file):
with tf.device('/cpu:0'):
decoder_graph = tf.Graph()
with decoder_graph.as_default():
decoded_image = tf.image.decode_jpeg(jpeg_file)
resized_image = tf.image.resize_image_with_crop_or_pad(decoded_image,
331, 331)
normalized_image = tf.divide(resized_image, 255)
reshaped_image = tf.reshape(normalized_image, [-1, 331, 331, 3])
with tf.Session(graph = decoder_graph) as image_session:
# image_session = tf.Session(graph = decoder_graph)
input_0 = image_session.run(reshaped_image)
return input_0
def diagnose_image(inference_session, input_image):
with tf.device('/gpu:0'):
predictions = inference_session.run(output_layer, feed_dict={input_layer: input_image})
predictions = np.squeeze(predictions)
return predictions
def main(arguments):
image_path = "./img/sunflower1.jpg"
start = datetime.datetime.now()
with tf.gfile.FastGFile(image_path, 'rb') as jpeg_file_raw:
jpeg_file = jpeg_file_raw.read()
input_0 = decode_image(jpeg_file)
predictions = diagnose_image(inference_session, input_0)
end = datetime.datetime.now()
print(image_path)
print(str(np.argmax(predictions)))
print("Time spent: ", end - start)
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))