-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
169 lines (134 loc) · 5.62 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import scanpy as sc
import numpy as np
import pickle
import pandas as pd
import argparse
class loader(object):
def __init__(self,root,metadata_dir,gene_dir,save_dir="./log"):
self.root=root
self.metadata_dir=metadata_dir
self.gene_dir=gene_dir
self._datasets()
self.load_meta_gene()
self.save_dir=save_dir
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
def load_meta_gene(self):
metadata=pd.read_csv(self.metadata_dir,sep=",")
genes=pd.read_csv(self.gene_dir)
clusters=metadata[["celltype"]].values
self.clusters=[clusters[i][0] for i in range(len(clusters))]
self.cells=[str(x) for x in metadata.index]
genes=genes.values
self.genes=[genes[i][0] for i in range(len(genes))]
self.cell2cluster={cell:ident for cell,ident in zip(self.cells,self.clusters)}
def _datasets(self):
file=open("sample0.txt","r")
datasets=[]
for line in file.readlines():
dataset=line.split("\t")[0]
datasets.append(dataset)
file.close()
self.datasets=datasets
def load_one_10X(self,dataset):
splits=dataset.split("-")
prefix=splits[0]+"-"+splits[1]
path=os.path.join(self.root,dataset,"outs/filtered_feature_bc_matrix.h5")
adata=sc.read_10x_h5(path)
#adata.var_names_make_unique()
cells=[prefix+"_"+str(x) for x in adata.obs_names]
#genes=[str(x) for x in adata.var_names]
adata.obs_names=cells
return adata
def load_all(self):
print("Initial...")
print("Loading from : No.1 dataset -- {}".format(self.datasets[0]))
adata=self.load_one_10X(self.datasets[0])
for i,dataset in enumerate(self.datasets[1:]):
print("Loading from : No.{} dataset -- {}".format(str(i+2),dataset))
data=self.load_one_10X(dataset)
adata=adata.concatenate(data,index_unique=None)
self.adata=adata
print("There are {} cells,{} genes".format(self.adata.n_obs,self.adata.n_vars))
del adata
cells=[str(cell) for cell in self.adata.obs_names]
genes=[str(gene) for gene in self.adata.var_names]
cells_index={cell:idx for idx,cell in enumerate(cells)}
data={"raw":{"adata":self.adata,
"cell2idx":cells_index,
"genes":genes
},
"reference":{"genes":self.genes,
"cell2cluster":self.cell2cluster
}
}
#print("save data")
#self.save_file=os.path.join(self.save_dir,"loader.pkl")
#with open(self.save_file,"wb") as fp:
# pickle.dump(data,fp)
#fp.close()
self.data=data
#print("Save Done")
def _cell2cluster(self):
all_cells=[str(cell) for cell in self.adata.obs_names]
cells_index={cell:idx for idx,cell in enumerate(all_cells)}
reference_cells=self.cells
all_genes=[str(gene) for gene in self.adata.var_names]
genes_index={gene:idx for idx,gene in enumerate(all_genes)}
reference_genes=self.genes
subset_cells=list(set(all_cells).intersection(reference_cells))
subset_genes=list(set(all_genes).intersection(reference_genes))
cell_idx=[cells_index[cell] for cell in subset_cells]
gene_idx=[genes_index[gene] for gene in subset_genes]
cell_cluster_prediction=[self.cell2cluster[cell] for cell in subset_cells]
x=self.adata[cell_idx,:]
x=x[:,gene_idx]
self.data["save"]={"adata":x,
"cluster":cell_cluster_prediction
}
self.save_file=os.path.join(self.save_dir,"loader.pkl")
print("save data")
with open(self.save_file,"wb") as fp:
pickle.dump(self.data,fp)
fp.close()
print("Save Done")
def to_array(self):
fp=open(self.save_file,"rb")
data=pickle.load(fp)
adata=data["save"]["adata"]
genes=adata.var_names
cells=adata.obs_names
array=adata.X.toarray()
data={"array":array,
"genes":genes,
"cells":cells,
"cluster":data["save"]["cluster"]
}
filename=os.path.join(os.path.dirname(self.save_file),"array.pkl")
with open(filename,"wb") as fp:
pickle.dump(data,fp,protocol=4)
fp.close()
print("write array done")
def _process(self,data):
adata=data.copy()
sc.pp.normalize_per_cell(adata, counts_per_cell_after=1e4)
sc.pp.log1p(adata)
sc.pp.scale(adata, max_value=10)
return adata
def __repr__(self):
fmt_str = "Object : " + self.__class__.__name__ + "\n"
fmt_str += "Dataset root :{}\n".format(self.root)
fmt_str += "Dataset meta path : {}\n".format(self.metadata_dir)
fmt_str += "Dataset gene path : {}\n".format(self.gene_dir)
fmt_str += "Number of datasets : {}\n".format(len(self.datasets))
return fmt_str
if __name__=="__main__":
genedir="/home/ye/Work/R/10X/Human/VDJ/VKH/pretrain/all_ratio_1.0_seed_6666_resolution_0.8_sample0.txt_time_2019-09-12/model/genes.csv"
root="/Data/zoc/result/10X-count/PBMC/10X-VDJ-human/5RNA"
metadir="/home/ye/Work/R/10X/Human/VDJ/VKH/pretrain/all_ratio_1.0_seed_6666_resolution_0.8_sample0.txt_time_2019-09-12/model/metadata.csv"
dataset=loader(root,metadir,genedir)
print(dataset)
dataset.load_all()
dataset._cell2cluster()
dataset.to_array()