-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathardnmf.py
722 lines (664 loc) · 35 KB
/
ardnmf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
# ARD-NMF.
from __future__ import division # In Python 3.0, // is the floor division operator and / the true division operator. The true_divide(x1, x2) function is equivalent to true division in Python.
import scipy.special
import scipy.stats
import numpy
import math
import classification as cl
import unique_binary_code
import utility
class mvnmf:
def __init__(self, X=None, features=None, samples=None):
#initialize
self.X=X # data
self.features=features # names of features
self.samples=samples # names of samples
self.M=self.X.shape[0] # number of features
self.N=self.X.shape[1] # number of samples
self.tol=1e-32
def factorize(self, K=None, a_W=None, b_W=None, a_H=None, b_H=None, tie_lambda=True, max_iter=200, compute_variational_lower_bound=True, variational_lower_bound_min_rate=1e-4, rng=numpy.random.RandomState(1000)):
"""
Factorize the matrix to at most K factors vectors.
"""
self.K=K # number of latent factors
self.a_W=a_W
self.b_W=b_W
if tie_lambda:
self.a_H=a_W
self.b_H=b_W
else:
self.a_H=a_H
self.b_H=b_H
self.max_iter=max_iter
self.rng=rng
#initiate
#sample E_Lambda_W and E_Lambda_H from Gamma prior distributions
if tie_lambda:
E_Lambda_W=self.rng.gamma(shape=self.a_W, scale=1/self.b_W, size=(self.K,1))
E_Lambda_H=E_Lambda_W
else:
E_Lambda_W=self.rng.gamma(shape=self.a_W, scale=1/self.b_W, size=(self.K,1))
E_Lambda_H=self.rng.gamma(shape=self.a_H, scale=1/self.b_H, size=(self.K,1))
#compute A_W, B_W, A_H, and B_H using prior expoential distribution(1,lambda)
A_W=1 #numpy.ones(shape=(self.M,self.K),dtype=float)
ONE_M_1=numpy.ones(shape=(self.M,1),dtype=float)
B_W=numpy.dot(ONE_M_1, numpy.transpose(E_Lambda_W)) + self.tol
#print B_W
A_H=1 #numpy.ones(shape=(self.K,self.N),dtype=float)
ONE_1_N=numpy.ones(shape=(1,self.N),dtype=float)
B_H=numpy.dot(E_Lambda_H, ONE_1_N) + self.tol
#print B_H
#compute E_W and E_H using A_W, B_W, A_H, and B_H
#print B_W
#print B_H
#E_W=A_W/B_W
#E_H=A_H/B_H
E_W=self.rng.gamma(shape=A_W,scale=1/B_W)
E_H=self.rng.gamma(shape=A_H,scale=1/B_H)
#compute L_W and L_H using A_W and A_H
#L_W=numpy.exp(scipy.special.psi(A_W))/B_W
#L_H=numpy.exp(scipy.special.psi(A_H))/B_H
L_W=E_W
L_H=E_H
#print L_W
#print L_H
L_W_L_H=L_W.dot(L_H)
if compute_variational_lower_bound:
neg_gammaln_X_plus_1=-scipy.special.gammaln(self.X+1)
Ls=[] # lower bound
Ls_rates=[] # change rate
mean_over=5 # compute the mean rate over this number of iterations
ONE_N_1=numpy.ones(shape=(self.N,1),dtype=float)
ONE_M_N=numpy.ones(shape=(self.M,self.N),dtype=float)
num_iter=1
while num_iter<=self.max_iter:
print "iteration: {0}".format(num_iter)
#compute Sigma_W and Sigma_H, need L_W and L_H
X_div_L_W_L_H=self.X/L_W_L_H
Sigma_W=L_W * X_div_L_W_L_H.dot(L_H.transpose())
Sigma_H=L_H.transpose() * X_div_L_W_L_H.transpose().dot(L_W)
#print Sigma_W
#print Sigma_H
#compute A_W, B_W, A_H, and B_H need Sigma_W, Sigma_H, E_W, E_H, E_Lambda_W, and E_Lambda_H
A_W=1 + Sigma_W
B_W=numpy.dot(ONE_M_1, numpy.transpose(E_Lambda_W)) + ONE_M_N.dot(E_H.transpose())
#compute E_W
E_W=A_W/B_W
A_H=1 + Sigma_H.transpose()
B_H=numpy.dot(E_Lambda_H, ONE_1_N) + E_W.transpose().dot(ONE_M_N)
#compute E_H
E_H=A_H/B_H
#compute L_W and L_H, need A_W, B_W, A_H, and B_H
#L_W=numpy.exp(scipy.special.psi(A_W))/B_W
#L_H=numpy.exp(scipy.special.psi(A_H))/B_H
psi_A_W=scipy.special.psi(A_W)
exppsi_A_W=numpy.exp(psi_A_W)
L_W=exppsi_A_W/B_W
psi_A_H=scipy.special.psi(A_H)
exppsi_A_H=numpy.exp(psi_A_H)
L_H=exppsi_A_H/B_H
L_W_L_H=L_W.dot(L_H)
#compute E_Lambda_W and E_Lambda_H, need E_W and E_H
if tie_lambda:
A_Lambda_W=self.a_W+self.M+self.N
B_Lambda_W=self.b_W+numpy.dot(E_W.transpose(),ONE_M_1) + numpy.dot(E_H,ONE_N_1)
E_Lambda_W=A_Lambda_W/B_Lambda_W
A_Lambda_H=A_Lambda_W
B_Lambda_H=B_Lambda_W
E_Lambda_H=E_Lambda_W
else:
A_Lambda_W=self.a_W+self.M
B_Lambda_W=self.b_W+numpy.dot(E_W.transpose(),ONE_M_1)
E_Lambda_W=A_Lambda_W/B_Lambda_W
A_Lambda_H=self.a_H+self.N
B_Lambda_H=b_H+numpy.dot(E_H,ONE_N_1)
E_Lambda_H=A_Lambda_H/B_Lambda_H
# variational lower bound
if compute_variational_lower_bound:
# compute variational lower bound
psi_A_Lambda_W=scipy.special.psi(A_Lambda_W)
log_B_Lambda_W=numpy.log(B_Lambda_W)
L_Lambda_W=psi_A_Lambda_W - log_B_Lambda_W
psi_A_Lambda_H=scipy.special.psi(A_Lambda_H)
log_B_Lambda_H=numpy.log(B_Lambda_H)
L_Lambda_H=psi_A_Lambda_H - log_B_Lambda_H
# bound
L=numpy.sum( neg_gammaln_X_plus_1 + self.X*numpy.log(L_W.dot(L_H))-E_W.dot(E_H)) + numpy.sum(ONE_M_1.dot(L_Lambda_W.transpose()) - ONE_M_1.dot(E_Lambda_W.transpose())*E_W) + numpy.sum(L_Lambda_H.dot(ONE_1_N) - E_Lambda_H.dot(ONE_1_N)*E_H) + numpy.sum(self.a_W*numpy.log(self.b_W) - scipy.special.gammaln(self.a_W) + (self.a_W-1)*L_Lambda_W - self.b_W*E_Lambda_W ) + numpy.sum(self.a_H*numpy.log(self.b_H) - scipy.special.gammaln(self.a_H) + (self.a_H-1)*L_Lambda_H - self.b_H*E_Lambda_H) + numpy.sum(scipy.special.gammaln(A_W) - (A_W-1)*psi_A_W - numpy.log(B_W) + A_W) + numpy.sum(scipy.special.gammaln(A_H) - (A_H-1)*psi_A_H - numpy.log(B_H) + A_H) + numpy.sum(scipy.special.gammaln(A_Lambda_W) - (A_Lambda_W-1)*psi_A_Lambda_W - log_B_Lambda_W + A_Lambda_W) + numpy.sum(scipy.special.gammaln(A_Lambda_H) - (A_Lambda_H-1)*psi_A_Lambda_H - log_B_Lambda_H + A_Lambda_H)
#L=numpy.sum( abs(self.X-E_W.dot(E_H)))
Ls.append(L)
if num_iter>=2:
Ls_rates.append((Ls[-1]-Ls[-2])/(-Ls[-2]))
Ls_rates_mean=numpy.mean(Ls_rates[-mean_over:])
print "The variational lower bound:{0}, change rate:{1}".format(L,Ls_rates_mean)
if num_iter>=10 and Ls_rates_mean<variational_lower_bound_min_rate:
break
num_iter=num_iter+1
#save the result
self.E_W=E_W
self.E_H=E_H
self.E_Lambda_W=E_Lambda_W
self.E_Lambda_H=E_Lambda_H
self.Ls=Ls # lower bounds
self.num_iter=num_iter # actural number of iterations run
print "finished fatorization!"
#NOTE: MAY CONSIDER ZERO COLUMNS in E_W and ZERO ROWS in E_H
def trim(self,trim_nonzero_portion=0.01,alpha=0.05,threshold_E_W=None,threshold_E_H=None):
# trim zero columns of E_W and corresponding rows of E_H
print "triming zero factors ..."
self.trim_nonzero_portion=trim_nonzero_portion
self.alpha=alpha
if threshold_E_W is None:
threshold_E_W=self.alpha*numpy.mean(self.E_W)
self.E_W_NZ=self.E_W>=threshold_E_W # non-zero indicator of E_W
#print "threhold_E_W:"
#print threshold_E_W
#print "E_W_NZ:"
#print numpy.array(self.E_W_NZ,dtype=int)
nonzero_portions_E_W=numpy.mean(self.E_W_NZ,axis=0)
if threshold_E_H is None:
threshold_E_H=self.alpha*numpy.mean(self.E_H)
self.E_H_NZ=self.E_H>=threshold_E_H # non-zero indicator of E_H
nonzero_portions_E_H=numpy.mean(self.E_H_NZ,axis=1)
ind_nonzero_factors=numpy.logical_and(nonzero_portions_E_W>=self.trim_nonzero_portion,nonzero_portions_E_H>=self.trim_nonzero_portion)
# filter zero factors
self.E_W=self.E_W[:,ind_nonzero_factors]
self.E_H=self.E_H[ind_nonzero_factors,:]
self.K=self.E_W.shape[1]
def reorder_factors(self):
print "reorder factors ..."
max_coef_ind=numpy.argmax(self.E_W,axis=0)
factor_order=numpy.argsort(max_coef_ind)
#factor_order=factor_order[::-1]
self.E_W=self.E_W[:,factor_order]
self.E_H=self.E_H[factor_order,:]
self.E_Lambda_W=self.E_Lambda_W[factor_order]
self.E_Lambda_H=self.E_Lambda_H[factor_order]
def reorder_samples(self,method="cluster_label",scores=None):
"""
Reorder the columns of X and H based on the column order of W for better visualization.
method: string, "cluster_label", "max_coef", "entropy", "pval", "correlation"
"""
print "reorder samples in each cluster ..."
# obtain the factor/cluster label of each sample
self.y=numpy.argmax(self.E_H,axis=0) # cluster labels
self.unique_y=numpy.unique(self.y)
# get the sizes of each cluster
cluster_sizes=[]
for c in self.unique_y:
ind_log=self.y==c
num_samples_c=ind_log.sum()
cluster_sizes.extend([num_samples_c])
self.cluster_sizes=numpy.array(cluster_sizes)
if method=="cluster_label":
ind=numpy.argsort(self.y)
self.scores=numpy.ones_like(self.y)
elif method=="max_coef":
if scores is None:
self.scores=numpy.max(self.E_H,axis=0)
#self.unique_y=numpy.unique(self.y)
numbers=numpy.array(range(self.N),dtype=int)
ind=[]
for c in self.unique_y:
ind_log=self.y==c
ind_log.shape=(ind_log.size,)
ind_c=numbers[ind_log]
ind_sorted=numpy.argsort(self.scores[ind_log])
ind_sorted=ind_c[ind_sorted]
ind_sorted=ind_sorted[::-1]
ind.extend(ind_sorted)
elif method=="pval":
pass
elif method=="correlation":
#self.scores,pval=scipy.stats.spearmanr(self.X,self.E_W, axis=0)
#self.unique_y=numpy.unique(self.y)
if scores is None:
scores=[]
pvals=[]
for c in self.unique_y:
ind_log=self.y==c
ind_log.shape=(ind_log.size,)
X_c=self.X[:,ind_log]
factor_c=self.E_W[:,c]
factor_c.shape=(self.M,1)
num_samples_c=ind_log.sum()
if num_samples_c==1:
print X_c.shape
X_c.shape=(self.M,1)
print "computing Spearman correlation for cluster:{0}".format(c)
scores_c=numpy.zeros(num_samples_c)
pvals_c=numpy.zeros(num_samples_c)
for s in range(num_samples_c):
scores_c[s],pvals_c[s]=scipy.stats.spearmanr(X_c[:,s],self.E_W[:,c])
if numpy.isnan(scores_c[s]) or numpy.isinf(scores_c[s]):
print "Get an irregular value:{0}. Set it to 0.".format(scores_c[s])
scores_c[s]=0
pvals_c[s]=1
scores.extend(scores_c)
pvals.extend(pvals_c)
self.scores=numpy.array(scores)
#self.scores[numpy.isnan(self.scores)]=0
pvals=numpy.array(pvals)
#pvals[numpy.isnan(pvals)]=1
numbers=numpy.array(range(self.N),dtype=int)
ind=[]
for c in self.unique_y:
ind_log=self.y==c
ind_log.shape=(ind_log.size,)
ind_c=numbers[ind_log]
ind_sorted=numpy.argsort(self.scores[ind_log])
ind_sorted=ind_c[ind_sorted]
ind_sorted=ind_sorted[::-1]
ind.extend(ind_sorted)
self.X_sorted=self.X[:,ind]
self.E_H_sorted=self.E_H[:,ind]
self.y_sorted=self.y[ind]
self.scores_sorted=self.scores[ind]
self.samples_sorted=self.samples[ind]
self.z=numpy.array(range(self.K),dtype=int)
def ext_feat(self):
pass
def colorbar_classes(self,classes,ax=None,hv="horizontal",clrs=None,unique_classes=None,unique_class_names=None,fontsize=6,ylabel_right=False,rotation=0):
# plot the color bar for classes. classes: 0,1,2,...,C-1
# hv: either "horizontal" or "vertical"
# clrs: numpy vector of strings, the color names.
# unique_class_names: if is None, it will be calcuated as numpy array of [0,1,2,...,C-1]
# fontsize, scalar integer.
num_samples=len(classes)
if unique_classes is None:
unique_classes=numpy.unique(classes)
if unique_class_names is None:
unique_class_names=unique_classes
else:
unique_class_names=numpy.array(unique_class_names)
num_classes=len(unique_classes)
num_samples_per_class=[numpy.sum(classes==unique_classes[c]) for c in range(num_classes)]
#xranges=[(,num_samples_per_class[c]) for c in unique_classes]
yrange=(0,1)
facecolors=clrs[0:num_classes]
xranges=[]
xticks=[]
xmin=1
for c in range(num_classes):
xwidth=num_samples_per_class[c]
xranges.append((xmin,xwidth))
#xticks.extend([xmin+math.floor(xwidth/2)])
xticks.extend([xmin+xwidth/2])
xmin=xmin+xwidth
if hv=="horizontal":
ax.set_ylim(0,1)
ax.set_xlim(1,num_samples+1)
ax.broken_barh(xranges,yrange,facecolors=facecolors)
ax.set_xticks(xticks)
ax.xaxis.tick_top()
ax.set_xticklabels(unique_class_names.astype(str),fontsize=fontsize,rotation=rotation)
ax.set_yticklabels([])
elif hv=="vertical":
ax.set_ylim(1,num_samples+1)
ax.set_xlim(0,1)
for c in range(num_classes):
xr=[(0,1)]
yr=xranges[c]
color=clrs[c]
ax.broken_barh(xr,yr,facecolors=color)
#ax.set_xticks([])
ax.set_xticklabels([])
ax.set_yticks(xticks)
ax.set_yticklabels(unique_class_names.astype(str), fontsize=fontsize, rotation=rotation)
if ylabel_right:
ax.yaxis.tick_right()
ax.invert_yaxis() #invert y axis
ax.tick_params(labelsize=fontsize)
for t in ax.xaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
for t in ax.yaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
def plot_heatmap(self,dir_save="./", prefix="ARDNMF", normalize="l2norm", width=10, height=10, fontsize=6, fmt="png", dpi=600, colormap="Reds", clrs=None, rng=numpy.random.RandomState(10)):
"""
Plot heatmaps of the decomposition result.
"""
import matplotlib as mpl
#mpl.use(fmt)
import matplotlib.pyplot as plt
from matplotlib import colors
print "ploting heatmap ..."
# color map
if colormap=="Reds":
cmap=plt.cm.Reds
elif colormap=="Blues":
cmap=plt.cm.Blues
elif colormap=="hot":
cmap=plt.cm.hot
elif colormap=="cool":
cmap=plt.cm.cool
# colors of classes
if clrs is None:
#cnames=colors.cnames
#clrs=[name for name,hex in cnames.iteritems()]
# remove light colors
clrs=["black","grey","rosybrown","frebrick","r","darksalmon","sienna","sandybrown","tan","gold","darkkhaki","olivedrab","chartreuse","lightgreen","green","mediumseagreen","mediumaquamarine","mediumturquoise","darkslategrey","c","cadetblue","dodgerblue","slategrey","darkblue","slateblue","blueviolet","mediumorchid","purple","magenta","hotpink","k","gray","lightcoral","maroon","coral","darkorange","orange","darkgoldenrob","olive","yellowgreen","lawngreen","forestgreen","g","springgreen","aquamarine","darkslategray","aqua","mediumblue","darkslateblue","indigo","darkmagenta","orchid","dimgrey","indianred","darkred","salmon","orangered","chocolate","peru","goldenrod","y","darkolivegreen","darkseagreen","limegreen","lime","turquoise","teal","cyan","steelblue","cornflowerblue","midnightblue","blue","mediumslateblue","darkorchid","m","mediumvioletred","palevioletred","dimgray","brown","red","tomato","lightsalmon","saddlebrown","yellow","greenyellow","palegreen","darkgreen","seagreen","mediumspringgreen","lightseagreen","darkcyan","darkturquoise","deepskyblue","slategray","royalblue","navy","b","mediumpurple","darkviolet","violet","fuchsia","deeppink","crimson"]
# permute all color names
num_clrs=len(clrs)
clrs=numpy.array(clrs)
ind_clrs=rng.choice(num_clrs,self.K)
clrs_classes=clrs[ind_clrs]
self.clrs_classes=clrs_classes
# get data first
if normalize=="l2norm":
X=cl.normalize_l2norm(numpy.transpose(self.X_sorted),tol=1e-32)
X=numpy.transpose(X)
W=cl.normalize_l2norm(numpy.transpose(self.E_W),tol=1e-32)
W=numpy.transpose(W)
H=cl.normalize_l2norm(numpy.transpose(self.E_H_sorted),tol=1e-32)
H=numpy.transpose(H)
elif normalize=="scale01":
X,_,_=cl.normalize_col_scale01(self.X_sorted,clip=True,clip_min=0.5,clip_max=1e4)
W,_,_=cl.normalize_col_scale01(self.E_W,clip=True,clip_min=1e-4,clip_max=1e4)
H,_,_=cl.normalize_col_scale01(self.E_H_sorted,clip=True,clip_min=1e-4,clip_max=1e4)
elif normalize=="log2":
X=numpy.log2(self.X_sorted+1)
W=numpy.log2(self.E_W_sorted+1)
H=numpy.log2(self.E_H+1)
elif normalize=="scale01log2":
X,_,_=cl.normalize_row_scale01(numpy.log2(self.X_sorted+1),clip=True,clip_min=0.1,clip_max=10)
W,_,_=cl.normalize_row_scale01(numpy.log2(self.E_W+1),clip=True,clip_min=0.1,clip_max=10)
H,_,_=cl.normalize_col_scale01(numpy.log2(self.E_H+1),clip=True,clip_min=0.1,clip_max=10)
else:
print "No normalization method is specified or this normalization method is not defined yet."
col_lab_X=self.samples_sorted
row_lab_X=self.features
col_lab_W=numpy.asarray(self.z,dtype=str)
row_lab_W=row_lab_X
col_lab_H=col_lab_X
row_lab_H=col_lab_W
# plot the heatmaps
#fig, ax = plt.subplots(1,3)
fig=plt.figure(figsize=(width,height))
allgrids=20
ax0_rowspan=allgrids-2
ax0_colspan=int(0.4*allgrids)
ax0_rowstart=1
ax0_colstart=0
ax0ccl_rowspan=1
ax0ccl_colspan=ax0_colspan
ax0ccl_rowstart=0
ax0ccl_colstart=0
ax0c_rowspan=1
ax0c_colspan=ax0_colspan
ax0c_rowstart=allgrids-1
ax0c_colstart=0
#ax0cfe_rowspan=ax0_rowspan
#ax0cfe_colspan=1
#ax0cfe_rowstart=1
#ax0cfe_colstart=ax0_colspan
ax1_rowspan=ax0_rowspan
ax1_colspan=int(0.2*allgrids)
ax1_rowstart=1
ax1_colstart=ax0_colspan
ax1cfa_rowspan=1
ax1cfa_colspan=ax1_colspan
ax1cfa_rowstart=0
ax1cfa_colstart=ax1_colstart
ax1c_rowspan=1
ax1c_colspan=ax1_colspan
ax1c_rowstart=allgrids-1
ax1c_colstart=ax1_colstart
ax2_rowspan=ax1_colspan
ax2_colspan=ax0_colspan
ax2_rowstart=1
ax2_colstart=ax1_colstart+ax1_colspan+1
ax2ccl_rowspan=1
ax2ccl_colspan=ax2_colspan
ax2ccl_rowstart=0
ax2ccl_colstart=ax2_colstart
ax2cfa_rowspan=ax2_rowspan
ax2cfa_colspan=1
ax2cfa_rowstart=1
ax2cfa_colstart=ax1_colstart+ax1_colspan
ax2c_rowspan=1
ax2c_colspan=ax2_colspan
ax2c_rowstart=ax2_rowspan+ax2ccl_rowspan
ax2c_colstart=ax2_colstart
# plot X
ax0 = plt.subplot2grid((allgrids, allgrids), (ax0_rowstart,ax0_colstart), rowspan=ax0_rowspan, colspan=ax0_colspan)
heatmap_X = ax0.pcolormesh(X, cmap=cmap)
#ax0.set_frame_on(True)
ax0.grid(False)
# put the major ticks at the middle of each cell
ax0.set_xticks(numpy.arange(X.shape[1])+0.5, minor=False)
ax0.set_yticks(numpy.arange(X.shape[0])+0.5, minor=False)
# want a more natural, table-like display
ax0.invert_yaxis()
ax0.xaxis.tick_top()
# add labels
#ax0.set_xticklabels(col_lab_X, minor=False,fontsize=fontsize-math.floor(math.log10(len(col_lab_X))))
ax0.set_xticklabels([], minor=False,fontsize=fontsize-math.floor(math.log10(len(col_lab_X))))
ax0.set_yticklabels(row_lab_X, minor=False,fontsize=fontsize-math.floor(math.log10(len(row_lab_X))))
# turn off ticks
for t in ax0.xaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
for t in ax0.yaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
# reduce the white margin
ax0.axis("tight")
#ax0.set_xlim(0,X.shape[1]+1)
#ax0.set_ylim(0,X.shape[0]+1)
# color bar
ax0c=plt.subplot2grid((allgrids, allgrids), (ax0c_rowstart, ax0c_colstart), rowspan=ax0c_rowspan, colspan=ax0c_colspan)
cbar_X = plt.colorbar(heatmap_X,orientation="horizontal",spacing="proportional",cax=ax0c,use_gridspec=False)
cbar_X.ax.tick_params(labelsize=fontsize)
# color bar for classes
ax0ccl=plt.subplot2grid((allgrids, allgrids), (ax0ccl_rowstart, ax0ccl_colstart), rowspan=ax0ccl_rowspan, colspan=ax0ccl_colspan)
self.colorbar_classes(self.y_sorted,ax=ax0ccl,hv="horizontal",clrs=clrs_classes,unique_class_names=None,fontsize=fontsize)
## color bar for feature groups
#ax0cfe=plt.subplot2grid((allgrids, allgrids), (ax0cfe_rowstart, ax0cfe_colstart), rowspan=ax0cfe_rowspan, colspan=ax0cfe_colspan)
#self.colorbar_classes(self.F_str_sorted, ax=ax0cfe,hv="vertical",clrs=clrs_feature_groups,unique_classes=self.s_str,unique_class_names=None,fontsize=fontsize,ylabel_right=True,rotation=0)
# plot W
ax1 = plt.subplot2grid((allgrids, allgrids), (ax1_rowstart, ax1_colstart), rowspan=ax1_rowspan, colspan=ax1_colspan)
heatmap_W = ax1.pcolormesh(W, cmap=cmap)
# put the major ticks at the middle of each cell
#ax1.set_frame_on(True)
ax1.grid(False)
ax1.set_xticks(numpy.arange(W.shape[1])+0.5, minor=False)
ax1.set_yticks(numpy.arange(W.shape[0])+0.5, minor=False)
# want a more natural, table-like display
ax1.invert_yaxis()
ax1.xaxis.tick_top()
# add labels
#ax1.set_xticklabels(col_lab_W, minor=False,fontsize=fontsize-math.floor(math.log10(len(col_lab_W))))
#ax1.set_yticklabels(row_lab_W, minor=False,fontsize=fontsize-math.floor(math.log10(len(row_lab_W))))
ax1.set_xticklabels([], minor=False,fontsize=fontsize-math.floor(math.log10(len(col_lab_W))))
ax1.set_yticklabels([], minor=False,fontsize=fontsize-math.floor(math.log10(len(row_lab_W))))
for t in ax1.xaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
for t in ax1.yaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
ax1.axis("tight")
#ax1.set_xlim(0,W.shape[1]+1)
#ax1.set_ylim(0,W.shape[0]+1)
# color bar
ax1c=plt.subplot2grid((allgrids, allgrids), (ax1c_rowstart, ax1c_colstart), rowspan=ax1c_rowspan,colspan=ax1c_colspan)
cbar_W = plt.colorbar(heatmap_W,orientation="horizontal",spacing="proportional",cax=ax1c,use_gridspec=False)
cbar_W.ax.tick_params(labelsize=fontsize)
# color bar for factors
ax1cfa=plt.subplot2grid((allgrids, allgrids), (ax1cfa_rowstart, ax1cfa_colstart), rowspan=ax1cfa_rowspan, colspan=ax1cfa_colspan)
self.colorbar_classes(self.z,ax=ax1cfa,hv="horizontal",clrs=clrs_classes,unique_class_names=None,fontsize=fontsize)
# plot H
ax2 = plt.subplot2grid((allgrids, allgrids), (ax2_rowstart, ax2_colstart), rowspan=ax2_rowspan, colspan=ax2_colspan)
heatmap_H = ax2.pcolormesh(H, cmap=cmap)
# put the major ticks at the middle of each cell
#ax2.set_frame_on(True)
ax2.grid(False)
ax2.set_xticks(numpy.arange(H.shape[1])+0.5, minor=False)
ax2.set_yticks(numpy.arange(H.shape[0])+0.5, minor=False)
# want a more natural, table-like display
ax2.invert_yaxis()
ax2.xaxis.tick_top()
# add labels
#ax2.set_xticklabels(col_lab_H, minor=False,fontsize=fontsize-math.floor(math.log10(len(col_lab_H))))
#ax2.set_yticklabels(row_lab_H, minor=False,fontsize=fontsize-math.floor(math.log10(len(row_lab_H))))
ax2.set_xticklabels([], minor=False,fontsize=fontsize-math.floor(math.log10(len(col_lab_H))))
ax2.set_yticklabels([], minor=False,fontsize=fontsize-math.floor(math.log10(len(row_lab_H))))
for t in ax2.xaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
for t in ax2.yaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
ax2.axis("tight")
#ax2.set_xlim(0,H.shape[1]+1)
#ax2.set_ylim(0,H.shape[0]+1)
# color bar
ax2c=plt.subplot2grid((allgrids, allgrids), (ax2c_rowstart, ax2c_colstart) ,rowspan=ax2c_rowspan, colspan=ax2c_colspan)
cbar_H = plt.colorbar(heatmap_H,orientation="horizontal",spacing="proportional",cax=ax2c,use_gridspec=False)
cbar_H.ax.tick_params(labelsize=fontsize)
# color bar for factors
ax2cfa=plt.subplot2grid((allgrids, allgrids), (ax2cfa_rowstart, ax2cfa_colstart), rowspan=ax2cfa_rowspan, colspan=ax2cfa_colspan)
self.colorbar_classes(self.z,ax=ax2cfa,hv="vertical",clrs=clrs_classes,unique_class_names=None,fontsize=fontsize,rotation=90)
# color bar for classes
ax2ccl=plt.subplot2grid((allgrids, allgrids), (ax2ccl_rowstart, ax2ccl_colstart), rowspan=ax2ccl_rowspan, colspan=ax2ccl_colspan)
self.colorbar_classes(self.y_sorted,ax=ax2ccl,hv="horizontal",clrs=clrs_classes,unique_class_names=None,fontsize=fontsize)
filename=dir_save+prefix+"."+fmt
plt.tight_layout()
#fig.savefig(filename,bbox_inches='tight',format="png")
fig.savefig(filename,bbox_inches='tight',format=fmt,dpi=dpi)
plt.close(fig)
def plot_clusters(self,dir_save="./", prefix="ARDNMF_Clusters", top=100, normalize="unitl2norm", clrs=None, rotation=90, subplot_col=2, subplot_width=3, subplot_height=2, fontsize=8, fmt="png", dpi=600, rng=numpy.random.RandomState(10)):
"""
Plot the samples for each cluster.
top: float or int. If top is in (0,1], the samples correlated with the corresponding metasample with correlation >=top are ploted. If top>1, simply select the top number (correlation) of samples.
normalize: string, "None","l2norm","scale01".
clrs: vector of color names.
"""
"Plot the data for each cluster."
import matplotlib as mpl
#mpl.use(fmt)
import matplotlib.pyplot as plt
from matplotlib import colors
print "ploting each cluster ..."
# colors of classes
if clrs is None:
#cnames=colors.cnames
#clrs=[name for name,hex in cnames.iteritems()]
# remove light colors
clrs=["black","grey","rosybrown","frebrick","r","darksalmon","sienna","sandybrown","tan","gold","darkkhaki","olivedrab","chartreuse","lightgreen","green","mediumseagreen","mediumaquamarine","mediumturquoise","darkslategrey","c","cadetblue","dodgerblue","slategrey","darkblue","slateblue","blueviolet","mediumorchid","purple","magenta","hotpink","k","gray","lightcoral","maroon","coral","darkorange","orange","darkgoldenrob","olive","yellowgreen","lawngreen","forestgreen","g","springgreen","aquamarine","darkslategray","aqua","mediumblue","darkslateblue","indigo","darkmagenta","orchid","dimgrey","indianred","darkred","salmon","orangered","chocolate","peru","goldenrod","y","darkolivegreen","darkseagreen","limegreen","lime","turquoise","teal","cyan","steelblue","cornflowerblue","midnightblue","blue","mediumslateblue","darkorchid","m","mediumvioletred","palevioletred","dimgray","brown","red","tomato","lightsalmon","saddlebrown","yellow","greenyellow","palegreen","darkgreen","seagreen","mediumspringgreen","lightseagreen","darkcyan","darkturquoise","deepskyblue","slategray","royalblue","navy","b","mediumpurple","darkviolet","violet","fuchsia","deeppink","crimson"]
# permute all color names
num_clrs=len(clrs)
clrs=numpy.array(clrs)
ind_clrs=rng.choice(num_clrs,self.K)
clrs_classes=clrs[ind_clrs]
self.clrs_classes=clrs_classes
num_clusters=len(self.unique_y)
subplot_row=int(math.ceil(num_clusters/subplot_col))
fig, ax = plt.subplots(subplot_row, subplot_col)
fig.set_size_inches(subplot_width*subplot_col, subplot_height*subplot_row)
ax_ind=0
for i in range(num_clusters):
row_c=ax_ind//subplot_col
col_c=ax_ind%subplot_col
c=self.unique_y[i]
ind_log=self.y_sorted==c
ind_log.shape=(ind_log.size,)
#print "The shape of y_sorted {0}".format(self.y_sorted.shape)
#print "The shape of ind_log {0}".format(ind_log.shape)
X_c=self.X_sorted[:,ind_log]
scores_c=self.scores_sorted[ind_log]
num_c=ind_log.sum() # the total number of cluster members
print "i={0}, c={1}".format(i,c)
print "Total number samples in cluster {0} is {1}".format(c,num_c)
if top==None or top>num_c:
top=num_c
if top>1:
ind_top=numpy.zeros(shape=(num_c,),dtype=bool)
ind_top[0:top]=True
elif top<=1 and top>0:
ind_top=scores_c>=top
else:
print "Top should be larger than zero!"
exit
X_c_top=X_c[:,ind_top]
# if there is no sample in this cluster fulfil the requirement, plot top 100 instead
if X_c_top.shape[1]==0:
ind_scores_c=numpy.argsort(scores_c)
ind_scores_c=ind_scores_c[::-1]
X_c_top=X_c[:,ind_scores_c[0:100]]
print "Warning: No sample in cluster {0} fulfil the requirement, plot the top 100 instead.".foramt(c)
# normalize for better visualization
if normalize=="l2norm":
X_c_top=cl.normalize_l2norm(X_c_top.transpose(),tol=1e-32)
X_c_top=X_c_top.transpose()
elif normalize=="scale01":
X_c_top,_,_=cl.normalize_col_scale01(X_c_top)
else:
print "No normalization method is specified or this normalization method is not defined yet."
print "Ploting cluster:{0}".format(c)
print "Length of clrs_classes:{0},currrent value of i:{1},cluster id:{2}".format(len(self.clrs_classes),i,c)
print X_c_top.shape
ax[row_c,col_c].plot(X_c_top,color=self.clrs_classes[c], linewidth=0.5, linestyle="solid")
centroid_clr="black"
if self.clrs_classes[c]=="black" or self.clrs_classes[c]=="k":
centroid_clr="red"
ax[row_c,col_c].plot(numpy.mean(X_c_top,axis=1),color=centroid_clr,linewidth=2,linestyle="solid")
ax[row_c,col_c].set_title("Cluster "+str(c))
ax[row_c,col_c].set_xticks(range(self.M))
ax[row_c,col_c].set_xticklabels(self.features,rotation=rotation)
ax[row_c,col_c].set_xlim([-0.25,self.M-0.75])
ax_ind=ax_ind+1
# clear ax for unused axes
for i in range(num_clusters,subplot_row*subplot_col):
row_c=i//subplot_col
col_c=i%subplot_col
ax[row_c,col_c].set_axis_off()
# save figure
filename=dir_save+prefix+"."+fmt
plt.tight_layout()
#fig.savefig(filename,bbox_inches='tight',format="png")
fig.savefig(filename,bbox_inches='tight',format=fmt,dpi=dpi)
plt.close(fig)
def learn_H_given_X_and_W(self):
pass
def save_mf_result(self,dir_save="./",prefix="MVNMF",transpose_E_H=True):
# filename include full path and prefix. For example: /global/data/tcga/mf/luad
print "saving factorization results ..."
filename_E_W=dir_save+ prefix +"_E_W.txt"
numpy.savetxt(filename_E_W, self.E_W, fmt='%.2e', delimiter='\t')
if transpose_E_H:
filename_X=dir_save+ prefix + "_X_sorted.txt"
numpy.savetxt(filename_X, numpy.transpose(self.X_sorted), fmt='%.2e', delimiter='\t')
filename_E_H=dir_save+ prefix + "_E_H.txt"
numpy.savetxt(filename_E_H, numpy.transpose(self.E_H), fmt='%.2e', delimiter='\t')
filename_E_H=dir_save+ prefix + "_E_H_sorted.txt"
numpy.savetxt(filename_E_H, numpy.transpose(self.E_H_sorted), fmt='%.2e', delimiter='\t')
else:
filename_X=dir_save+ prefix + "_X_sorted.txt"
numpy.savetxt(filename_X, self.X_sorted, fmt='%.2e', delimiter='\t')
filename_E_H=dir_save+ prefix + "_E_H.txt"
numpy.savetxt(filename_E_H, self.E_H, fmt='%.2e', delimiter='\t')
filename_E_H=dir_save+ prefix + "_E_H_sorted.txt"
numpy.savetxt(filename_E_H, self.E_H_sorted, fmt='%.2e', delimiter='\t')
self.samples_sorted.shape=(self.N,1)
self.y_sorted.shape=(self.N,1)
self.scores_sorted.shape=(self.N,1)
filename_cluster=dir_save+ prefix + "_cluster.txt"
numpy.savetxt(filename_cluster, numpy.concatenate((self.samples_sorted,self.y_sorted,self.scores_sorted),axis=1), fmt='%s', delimiter='\t')
self.clrs_clusters=self.clrs_classes[self.unique_y]
self.unique_y.shape=(self.unique_y.size,1)
self.cluster_sizes.shape=(self.cluster_sizes.size,1)
self.clrs_clusters.shape=(self.clrs_clusters.size,1)
filename_cluster=dir_save+ prefix + "_cluster_summary.txt"
numpy.savetxt(filename_cluster, numpy.concatenate((self.unique_y,self.clrs_clusters,self.cluster_sizes),axis=1), fmt='%s', delimiter='\t')
self.samples_sorted.shape=(self.N,)
self.y_sorted.shape=(self.N,)
self.scores_sorted.shape=(self.N,)
self.unique_y.shape=(self.unique_y.size,)
self.cluster_sizes.shape=(self.cluster_sizes.size,)
self.clrs_clusters.shape=(self.clrs_clusters.size,)
filename_E_Lambda_W=dir_save+ prefix +"_E_Lambda_W.txt"
numpy.savetxt(filename_E_Lambda_W, self.E_Lambda_W, fmt='%.2e', delimiter='\t')
filename_E_Lambda_H=dir_save+ prefix +"_E_Lambda_H.txt"
numpy.savetxt(filename_E_Lambda_H, self.E_Lambda_H, fmt='%.2e', delimiter='\t')