-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathbiggan.py
626 lines (516 loc) · 23.8 KB
/
biggan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
#/usr/bin/env python3
# Taken from here: https://github.com/huggingface/pytorch-pretrained-BigGAN
# MIT License
#
# Copyright (c) 2019 Thomas Wolf
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch.nn as nn
import torch.nn.functional as F
import torch
import math
import json
import logging
import os
import shutil
import tempfile
from functools import wraps
from hashlib import sha256
import sys
import copy
import boto3
import requests
from botocore.exceptions import ClientError
from tqdm import tqdm
WEIGHTS_NAME = 'pytorch_model.bin'
CONFIG_NAME = 'config.json'
try:
from urllib.parse import urlparse
except ImportError:
from urlparse import urlparse
try:
from pathlib import Path
PYTORCH_PRETRAINED_BIGGAN_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BIGGAN_CACHE',
os.path.join(os.getcwd(), '.pytorch_pretrained_biggan')))
except (AttributeError, ImportError):
PYTORCH_PRETRAINED_BIGGAN_CACHE = os.getenv('PYTORCH_PRETRAINED_BIGGAN_CACHE',
os.path.join(os.getcwd(), '.pytorch_pretrained_biggan'))
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
def url_to_filename(url, etag=None):
"""
Convert `url` into a hashed filename in a repeatable way.
If `etag` is specified, append its hash to the url's, delimited
by a period.
"""
url_bytes = url.encode('utf-8')
url_hash = sha256(url_bytes)
filename = url_hash.hexdigest()
if etag:
etag_bytes = etag.encode('utf-8')
etag_hash = sha256(etag_bytes)
filename += '.' + etag_hash.hexdigest()
return filename
def filename_to_url(filename, cache_dir=None):
"""
Return the url and etag (which may be ``None``) stored for `filename`.
Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist.
"""
if cache_dir is None:
cache_dir = PYTORCH_PRETRAINED_BIGGAN_CACHE
if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
cache_path = os.path.join(cache_dir, filename)
if not os.path.exists(cache_path):
raise EnvironmentError("file {} not found".format(cache_path))
meta_path = cache_path + '.json'
if not os.path.exists(meta_path):
raise EnvironmentError("file {} not found".format(meta_path))
with open(meta_path, encoding="utf-8") as meta_file:
metadata = json.load(meta_file)
url = metadata['url']
etag = metadata['etag']
return url, etag
def cached_path(url_or_filename, cache_dir=None):
"""
Given something that might be a URL (or might be a local path),
determine which. If it's a URL, download the file and cache it, and
return the path to the cached file. If it's already a local path,
make sure the file exists and then return the path.
"""
if cache_dir is None:
cache_dir = PYTORCH_PRETRAINED_BIGGAN_CACHE
if sys.version_info[0] == 3 and isinstance(url_or_filename, Path):
url_or_filename = str(url_or_filename)
if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
parsed = urlparse(url_or_filename)
if parsed.scheme in ('http', 'https', 's3'):
# URL, so get it from the cache (downloading if necessary)
return get_from_cache(url_or_filename, cache_dir)
elif os.path.exists(url_or_filename):
# File, and it exists.
return url_or_filename
elif parsed.scheme == '':
# File, but it doesn't exist.
raise EnvironmentError("file {} not found".format(url_or_filename))
else:
# Something unknown
raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
def split_s3_path(url):
"""Split a full s3 path into the bucket name and path."""
parsed = urlparse(url)
if not parsed.netloc or not parsed.path:
raise ValueError("bad s3 path {}".format(url))
bucket_name = parsed.netloc
s3_path = parsed.path
# Remove '/' at beginning of path.
if s3_path.startswith("/"):
s3_path = s3_path[1:]
return bucket_name, s3_path
def s3_request(func):
"""
Wrapper function for s3 requests in order to create more helpful error
messages.
"""
@wraps(func)
def wrapper(url, *args, **kwargs):
try:
return func(url, *args, **kwargs)
except ClientError as exc:
if int(exc.response["Error"]["Code"]) == 404:
raise EnvironmentError("file {} not found".format(url))
else:
raise
return wrapper
@s3_request
def s3_etag(url):
"""Check ETag on S3 object."""
s3_resource = boto3.resource("s3")
bucket_name, s3_path = split_s3_path(url)
s3_object = s3_resource.Object(bucket_name, s3_path)
return s3_object.e_tag
@s3_request
def s3_get(url, temp_file):
"""Pull a file directly from S3."""
s3_resource = boto3.resource("s3")
bucket_name, s3_path = split_s3_path(url)
s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)
def http_get(url, temp_file):
req = requests.get(url, stream=True)
content_length = req.headers.get('Content-Length')
total = int(content_length) if content_length is not None else None
progress = tqdm(unit="B", total=total)
for chunk in req.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
progress.update(len(chunk))
temp_file.write(chunk)
progress.close()
def get_from_cache(url, cache_dir=None):
"""
Given a URL, look for the corresponding dataset in the local cache.
If it's not there, download it. Then return the path to the cached file.
"""
if cache_dir is None:
cache_dir = PYTORCH_PRETRAINED_BIGGAN_CACHE
if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
# Get eTag to add to filename, if it exists.
if url.startswith("s3://"):
etag = s3_etag(url)
else:
response = requests.head(url, allow_redirects=True)
if response.status_code != 200:
raise IOError("HEAD request failed for url {} with status code {}"
.format(url, response.status_code))
etag = response.headers.get("ETag")
filename = url_to_filename(url, etag)
# get cache path to put the file
cache_path = os.path.join(cache_dir, filename)
if not os.path.exists(cache_path):
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with tempfile.NamedTemporaryFile() as temp_file:
logger.info("%s not found in cache, downloading to %s", url, temp_file.name)
# GET file object
if url.startswith("s3://"):
s3_get(url, temp_file)
else:
http_get(url, temp_file)
# we are copying the file before closing it, so flush to avoid truncation
temp_file.flush()
# shutil.copyfileobj() starts at the current position, so go to the start
temp_file.seek(0)
logger.info("copying %s to cache at %s", temp_file.name, cache_path)
with open(cache_path, 'wb') as cache_file:
shutil.copyfileobj(temp_file, cache_file)
logger.info("creating metadata file for %s", cache_path)
meta = {'url': url, 'etag': etag}
meta_path = cache_path + '.json'
with open(meta_path, 'w', encoding="utf-8") as meta_file:
json.dump(meta, meta_file)
logger.info("removing temp file %s", temp_file.name)
return cache_path
def read_set_from_file(filename):
'''
Extract a de-duped collection (set) of text from a file.
Expected file format is one item per line.
'''
collection = set()
with open(filename, 'r', encoding='utf-8') as file_:
for line in file_:
collection.add(line.rstrip())
return collection
def get_file_extension(path, dot=True, lower=True):
ext = os.path.splitext(path)[1]
ext = ext if dot else ext[1:]
return ext.lower() if lower else ext
PRETRAINED_MODEL_ARCHIVE_MAP = {
'biggan-deep-128': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-128-pytorch_model.bin",
'biggan-deep-256': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-256-pytorch_model.bin",
'biggan-deep-512': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-512-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
'biggan-deep-128': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-128-config.json",
'biggan-deep-256': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-256-config.json",
'biggan-deep-512': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-512-config.json",
}
class BigGANConfig(object):
""" Configuration class to store the configuration of a `BigGAN`.
Defaults are for the 128x128 model.
layers tuple are (up-sample in the layer ?, input channels, output channels)
"""
def __init__(self,
output_dim=128,
z_dim=128,
class_embed_dim=128,
channel_width=128,
num_classes=1000,
layers=[(False, 16, 16),
(True, 16, 16),
(False, 16, 16),
(True, 16, 8),
(False, 8, 8),
(True, 8, 4),
(False, 4, 4),
(True, 4, 2),
(False, 2, 2),
(True, 2, 1)],
attention_layer_position=8,
eps=1e-4,
n_stats=51):
"""Constructs BigGANConfig. """
self.output_dim = output_dim
self.z_dim = z_dim
self.class_embed_dim = class_embed_dim
self.channel_width = channel_width
self.num_classes = num_classes
self.layers = layers
self.attention_layer_position = attention_layer_position
self.eps = eps
self.n_stats = n_stats
@classmethod
def from_dict(cls, json_object):
"""Constructs a `BigGANConfig` from a Python dictionary of parameters."""
config = BigGANConfig()
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BigGANConfig` from a json file of parameters."""
with open(json_file, "r", encoding='utf-8') as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
def snconv2d(eps=1e-12, **kwargs):
return nn.utils.spectral_norm(nn.Conv2d(**kwargs), eps=eps)
def snlinear(eps=1e-12, **kwargs):
return nn.utils.spectral_norm(nn.Linear(**kwargs), eps=eps)
def sn_embedding(eps=1e-12, **kwargs):
return nn.utils.spectral_norm(nn.Embedding(**kwargs), eps=eps)
class SelfAttn(nn.Module):
""" Self attention Layer"""
def __init__(self, in_channels, eps=1e-12):
super(SelfAttn, self).__init__()
self.in_channels = in_channels
self.snconv1x1_theta = snconv2d(in_channels=in_channels, out_channels=in_channels//8,
kernel_size=1, bias=False, eps=eps)
self.snconv1x1_phi = snconv2d(in_channels=in_channels, out_channels=in_channels//8,
kernel_size=1, bias=False, eps=eps)
self.snconv1x1_g = snconv2d(in_channels=in_channels, out_channels=in_channels//2,
kernel_size=1, bias=False, eps=eps)
self.snconv1x1_o_conv = snconv2d(in_channels=in_channels//2, out_channels=in_channels,
kernel_size=1, bias=False, eps=eps)
self.maxpool = nn.MaxPool2d(2, stride=2, padding=0)
self.softmax = nn.Softmax(dim=-1)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
_, ch, h, w = x.size()
# Theta path
theta = self.snconv1x1_theta(x)
theta = theta.view(-1, ch//8, h*w)
# Phi path
phi = self.snconv1x1_phi(x)
phi = self.maxpool(phi)
phi = phi.view(-1, ch//8, h*w//4)
# Attn map
attn = torch.bmm(theta.permute(0, 2, 1), phi)
attn = self.softmax(attn)
# g path
g = self.snconv1x1_g(x)
g = self.maxpool(g)
g = g.view(-1, ch//2, h*w//4)
# Attn_g - o_conv
attn_g = torch.bmm(g, attn.permute(0, 2, 1))
attn_g = attn_g.view(-1, ch//2, h, w)
attn_g = self.snconv1x1_o_conv(attn_g)
# Out
out = x + self.gamma*attn_g
return out
class BigGANBatchNorm(nn.Module):
""" This is a batch norm module that can handle conditional input and can be provided with pre-computed
activation means and variances for various truncation parameters.
We cannot just rely on torch.batch_norm since it cannot handle
batched weights (pytorch 1.0.1). We computate batch_norm our-self without updating running means and variances.
If you want to train this model you should add running means and variance computation logic.
"""
def __init__(self, num_features, condition_vector_dim=None, n_stats=51, eps=1e-4, conditional=True):
super(BigGANBatchNorm, self).__init__()
self.num_features = num_features
self.eps = eps
self.conditional = conditional
# We use pre-computed statistics for n_stats values of truncation between 0 and 1
self.register_buffer('running_means', torch.zeros(n_stats, num_features))
self.register_buffer('running_vars', torch.ones(n_stats, num_features))
self.step_size = 1.0 / (n_stats - 1)
if conditional:
assert condition_vector_dim is not None
self.scale = snlinear(in_features=condition_vector_dim, out_features=num_features, bias=False, eps=eps)
self.offset = snlinear(in_features=condition_vector_dim, out_features=num_features, bias=False, eps=eps)
else:
self.weight = torch.nn.Parameter(torch.Tensor(num_features))
self.bias = torch.nn.Parameter(torch.Tensor(num_features))
def forward(self, x, truncation, condition_vector=None):
# Retreive pre-computed statistics associated to this truncation
coef, start_idx = math.modf(truncation / self.step_size)
start_idx = int(start_idx)
if coef != 0.0: # Interpolate
running_mean = self.running_means[start_idx] * coef + self.running_means[start_idx + 1] * (1 - coef)
running_var = self.running_vars[start_idx] * coef + self.running_vars[start_idx + 1] * (1 - coef)
else:
running_mean = self.running_means[start_idx]
running_var = self.running_vars[start_idx]
if self.conditional:
running_mean = running_mean.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
running_var = running_var.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
weight = 1 + self.scale(condition_vector).unsqueeze(-1).unsqueeze(-1)
bias = self.offset(condition_vector).unsqueeze(-1).unsqueeze(-1)
out = (x - running_mean) / torch.sqrt(running_var + self.eps) * weight + bias
else:
out = F.batch_norm(x, running_mean, running_var, self.weight, self.bias,
training=False, momentum=0.0, eps=self.eps)
return out
class GenBlock(nn.Module):
def __init__(self, in_size, out_size, condition_vector_dim, reduction_factor=4, up_sample=False,
n_stats=51, eps=1e-12):
super(GenBlock, self).__init__()
self.up_sample = up_sample
self.drop_channels = (in_size != out_size)
middle_size = in_size // reduction_factor
self.bn_0 = BigGANBatchNorm(in_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True)
self.conv_0 = snconv2d(in_channels=in_size, out_channels=middle_size, kernel_size=1, eps=eps)
self.bn_1 = BigGANBatchNorm(middle_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True)
self.conv_1 = snconv2d(in_channels=middle_size, out_channels=middle_size, kernel_size=3, padding=1, eps=eps)
self.bn_2 = BigGANBatchNorm(middle_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True)
self.conv_2 = snconv2d(in_channels=middle_size, out_channels=middle_size, kernel_size=3, padding=1, eps=eps)
self.bn_3 = BigGANBatchNorm(middle_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True)
self.conv_3 = snconv2d(in_channels=middle_size, out_channels=out_size, kernel_size=1, eps=eps)
self.relu = nn.ReLU()
def forward(self, x, cond_vector, truncation):
x0 = x
x = self.bn_0(x, truncation, cond_vector)
x = self.relu(x)
x = self.conv_0(x)
x = self.bn_1(x, truncation, cond_vector)
x = self.relu(x)
if self.up_sample:
x = F.interpolate(x, scale_factor=2, mode='nearest')
x = self.conv_1(x)
x = self.bn_2(x, truncation, cond_vector)
x = self.relu(x)
x = self.conv_2(x)
x = self.bn_3(x, truncation, cond_vector)
x = self.relu(x)
x = self.conv_3(x)
if self.drop_channels:
new_channels = x0.shape[1] // 2
x0 = x0[:, :new_channels, ...]
if self.up_sample:
x0 = F.interpolate(x0, scale_factor=2, mode='nearest')
out = x + x0
return out
class Generator(nn.Module):
def __init__(self, config):
super(Generator, self).__init__()
self.config = config
ch = config.channel_width
condition_vector_dim = config.z_dim * 2
self.gen_z = snlinear(in_features=condition_vector_dim,
out_features=4 * 4 * 16 * ch, eps=config.eps)
layers = []
for i, layer in enumerate(config.layers):
if i == config.attention_layer_position:
layers.append(SelfAttn(ch*layer[1], eps=config.eps))
layers.append(GenBlock(ch*layer[1],
ch*layer[2],
condition_vector_dim,
up_sample=layer[0],
n_stats=config.n_stats,
eps=config.eps))
self.layers = nn.ModuleList(layers)
self.bn = BigGANBatchNorm(ch, n_stats=config.n_stats, eps=config.eps, conditional=False)
self.relu = nn.ReLU()
self.conv_to_rgb = snconv2d(in_channels=ch, out_channels=ch, kernel_size=3, padding=1, eps=config.eps)
self.tanh = nn.Tanh()
def forward(self, cond_vector, truncation):
z = self.gen_z(cond_vector[0].unsqueeze(0))
# We use this conversion step to be able to use TF weights:
# TF convention on shape is [batch, height, width, channels]
# PT convention on shape is [batch, channels, height, width]
z = z.view(-1, 4, 4, 16 * self.config.channel_width)
z = z.permute(0, 3, 1, 2).contiguous()
for i, layer in enumerate(self.layers):
if isinstance(layer, GenBlock):
z = layer(z, cond_vector[i+1].unsqueeze(0), truncation)
# z = layer(z, cond_vector[].unsqueeze(0), truncation)
else:
z = layer(z)
z = self.bn(z, truncation)
z = self.relu(z)
z = self.conv_to_rgb(z)
z = z[:, :3, ...]
z = self.tanh(z)
return z
class BigGAN(nn.Module):
"""BigGAN Generator."""
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
model_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
model_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
try:
resolved_model_file = cached_path(model_file, cache_dir=cache_dir)
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error("Wrong model name, should be a valid path to a folder containing "
"a {} file and a {} file or a model name in {}".format(
WEIGHTS_NAME, CONFIG_NAME, PRETRAINED_MODEL_ARCHIVE_MAP.keys()))
raise
logger.info("loading model {} from cache at {}".format(pretrained_model_name_or_path, resolved_model_file))
# Load config
config = BigGANConfig.from_json_file(resolved_config_file)
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
state_dict = torch.load(resolved_model_file, map_location='cpu' if not torch.cuda.is_available() else None)
model.load_state_dict(state_dict, strict=False)
return model
def __init__(self, config):
super(BigGAN, self).__init__()
self.config = config
self.embeddings = nn.Linear(config.num_classes, config.z_dim, bias=False)
self.generator = Generator(config)
def forward(self, z, class_label, truncation):
assert 0 < truncation <= 1
embed = self.embeddings(class_label)
cond_vector = torch.cat((z, embed), dim=1)
z = self.generator(cond_vector, truncation)
return z
def one_hot_from_int(int_or_list, batch_size=1):
""" Create a one-hot vector from a class index or a list of class indices.
Params:
int_or_list: int, or list of int, of the imagenet classes (between 0 and 999)
batch_size: batch size.
If int_or_list is an int create a batch of identical classes.
If int_or_list is a list, we should have `len(int_or_list) == batch_size`
Output:
array of shape (batch_size, 1000)
"""
if isinstance(int_or_list, int):
int_or_list = [int_or_list]
if len(int_or_list) == 1 and batch_size > 1:
int_or_list = [int_or_list[0]] * batch_size
assert batch_size == len(int_or_list)
array = np.zeros((batch_size, 1000), dtype=np.float32)
for i, j in enumerate(int_or_list):
array[i, j] = 1.0
return array