-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy pathtest_cluster_seg.py
150 lines (126 loc) · 5.53 KB
/
test_cluster_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from __future__ import division
import glob
import torch
import numpy as np
import os.path as osp
import torch.nn.functional as F
from mmcv.runner import load_checkpoint
from mmcv.parallel import MMDataParallel
from utils import list2dict, write_meta
from dsgcn.datasets import (build_dataset, build_processor, build_dataloader)
from post_process import deoverlap
from evaluation import evaluate
def test_cluster_seg(model, cfg, logger):
assert osp.isfile(cfg.pred_iou_score)
if cfg.load_from:
logger.info('load pretrained model from: {}'.format(cfg.load_from))
load_checkpoint(model, cfg.load_from, strict=True, logger=logger)
for k, v in cfg.model['kwargs'].items():
setattr(cfg.test_data, k, v)
setattr(cfg.test_data, 'pred_iop_score', cfg.pred_iop_score)
dataset = build_dataset(cfg.test_data)
processor = build_processor(cfg.stage)
inst_num = dataset.inst_num
# read pred_scores from file and do sanity check
d = np.load(cfg.pred_iou_score, allow_pickle=True)
pred_scores = d['data']
meta = d['meta'].item()
assert inst_num == meta['tot_inst_num'], '{} vs {}'.format(
inst_num, meta['tot_inst_num'])
proposals = [fn_node for fn_node, _ in dataset.tot_lst]
_proposals = []
fn_node_pattern = '*_node.npz'
for proposal_folder in meta['proposal_folders']:
fn_clusters = sorted(
glob.glob(osp.join(proposal_folder, fn_node_pattern)))
_proposals.extend([fn_node for fn_node in fn_clusters])
assert proposals == _proposals, '{} vs {}'.format(len(proposals),
len(_proposals))
losses = []
pred_outlier_scores = []
stats = {'mean': []}
if cfg.gpus == 1:
data_loader = build_dataloader(dataset,
processor,
cfg.test_batch_size_per_gpu,
cfg.workers_per_gpu,
train=False)
model = MMDataParallel(model, device_ids=range(cfg.gpus))
if cfg.cuda:
model.cuda()
model.eval()
for i, data in enumerate(data_loader):
with torch.no_grad():
output, loss = model(data, return_loss=True)
losses += [loss.item()]
if i % cfg.log_config.interval == 0:
if dataset.ignore_label:
logger.info('[Test] Iter {}/{}'.format(
i, len(data_loader)))
else:
logger.info('[Test] Iter {}/{}: Loss {:.4f}'.format(
i, len(data_loader), loss))
if cfg.save_output:
output = F.softmax(output, dim=1)
output = output[:, 1, :]
scores = output.data.cpu().numpy()
pred_outlier_scores.extend(list(scores))
stats['mean'] += [scores.mean()]
else:
raise NotImplementedError
if not dataset.ignore_label:
avg_loss = sum(losses) / len(losses)
logger.info('[Test] Overall Loss {:.4f}'.format(avg_loss))
scores_mean = 1. * sum(stats['mean']) / len(stats['mean'])
logger.info('mean of pred_outlier_scores: {:.4f}'.format(scores_mean))
# save predicted scores
if cfg.save_output:
if cfg.load_from:
fn = osp.basename(cfg.load_from)
else:
fn = 'random'
opath = osp.join(cfg.work_dir, fn[:fn.rfind('.pth')] + '.npz')
meta = {
'tot_inst_num': inst_num,
'proposal_folders': cfg.test_data.proposal_folders,
}
logger.info('dump pred_outlier_scores ({}) to {}'.format(
len(pred_outlier_scores), opath))
np.savez_compressed(opath, data=pred_outlier_scores, meta=meta)
# post-process
outlier_scores = {
fn_node: outlier_score
for (fn_node,
_), outlier_score in zip(dataset.lst, pred_outlier_scores)
}
# de-overlap (w gcn-s)
pred_labels_w_seg = deoverlap(pred_scores,
proposals,
inst_num,
cfg.th_pos,
cfg.th_iou,
outlier_scores=outlier_scores,
th_outlier=cfg.th_outlier,
keep_outlier=cfg.keep_outlier)
# de-overlap (wo gcn-s)
pred_labels_wo_seg = deoverlap(pred_scores, proposals, inst_num,
cfg.th_pos, cfg.th_iou)
# save predicted labels
if cfg.save_output:
ofn_meta_w_seg = osp.join(cfg.work_dir, 'pred_labels_w_seg.txt')
ofn_meta_wo_seg = osp.join(cfg.work_dir, 'pred_labels_wo_seg.txt')
print('save predicted labels to {} and {}'.format(
ofn_meta_w_seg, ofn_meta_wo_seg))
pred_idx2lb_w_seg = list2dict(pred_labels_w_seg, ignore_value=-1)
pred_idx2lb_wo_seg = list2dict(pred_labels_wo_seg, ignore_value=-1)
write_meta(ofn_meta_w_seg, pred_idx2lb_w_seg, inst_num=inst_num)
write_meta(ofn_meta_wo_seg, pred_idx2lb_wo_seg, inst_num=inst_num)
# evaluation
if not dataset.ignore_label:
gt_labels = dataset.labels
print('==> evaluation (with gcn-s)')
for metric in cfg.metrics:
evaluate(gt_labels, pred_labels_w_seg, metric)
print('==> evaluation (without gcn-s)')
for metric in cfg.metrics:
evaluate(gt_labels, pred_labels_wo_seg, metric)