-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmnist-example.lua
358 lines (302 loc) · 11 KB
/
mnist-example.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
----------------------------------------------------------------------
-- MNIST example taken from
-- https://github.com/torch/demos/tree/master/train-a-digit-classifier
----------------------------------------------------------------------
require 'torch'
require 'nn'
require 'nnx'
require 'optim'
require 'image'
require 'dataset-mnist'
require 'pl'
require 'paths'
require 'lsuv'
nninit = require 'nninit'
----------------------------------------------------------------------
-- parse command-line options
--
local opt = lapp[[
-s,--save (default "logs") subdirectory to save logs
-n,--network (default "") reload pretrained network
-m,--model (default "convnet") type of model tor train: convnet | mlp | linear
-f,--full use the full dataset
-p,--plot plot while training
-o,--optimization (default "SGD") optimization: SGD | LBFGS
-r,--learningRate (default 0.05) learning rate, for SGD only
-b,--batchSize (default 100) batch size
-m,--momentum (default 0) momentum, for SGD only
-i,--maxIter (default 3) maximum nb of iterations per batch, for LBFGS
--coefL1 (default 0) L1 penalty on the weights
--coefL2 (default 0) L2 penalty on the weights
-t,--threads (default 4) number of threads
-l,--lsuv use lsuv init
]]
-- fix seed
torch.manualSeed(1)
-- threads
torch.setnumthreads(opt.threads)
print('<torch> set nb of threads to ' .. torch.getnumthreads())
-- use floats, for SGD
if opt.optimization == 'SGD' then
torch.setdefaulttensortype('torch.FloatTensor')
end
-- batch size?
if opt.optimization == 'LBFGS' and opt.batchSize < 100 then
error('LBFGS should not be used with small mini-batches; 1000 is recommended')
end
----------------------------------------------------------------------
-- get/create dataset
--
if opt.full then
nbTrainingPatches = 60000
nbTestingPatches = 10000
else
nbTrainingPatches = 2000
nbTestingPatches = 1000
print('<warning> only using 2000 samples to train quickly (use flag -full to use 60000 samples)')
end
-- create training set and normalize
trainData = mnist.loadTrainSet(nbTrainingPatches, geometry)
trainData:normalizeGlobal(mean, std)
-- create test set and normalize
testData = mnist.loadTestSet(nbTestingPatches, geometry)
testData:normalizeGlobal(mean, std)
----------------------------------------------------------------------
----------------------------------------------------------------------
-- define model to train
-- on the 10-class classification problem
--
classes = {'1','2','3','4','5','6','7','8','9','10'}
-- geometry: width and height of input images
geometry = {32,32}
if opt.network == '' then
-- define model to train
model = nn.Sequential()
if opt.model == 'convnet' then
------------------------------------------------------------
-- convolutional network
------------------------------------------------------------
-- stage 1 : mean suppresion -> filter bank -> squashing -> max pooling
model:add(nn.SpatialConvolutionMM(1, 32, 5, 5):init('weight', nninit.orthogonal, {gain = 'relu'}))
model:add(nn.ReLU())
model:add(nn.SpatialMaxPooling(3, 3, 3, 3))
-- stage 2 : mean suppresion -> filter bank -> squashing -> max pooling
model:add(nn.SpatialConvolutionMM(32, 64, 5, 5):init('weight', nninit.orthogonal, {gain = 'relu'}))
model:add(nn.ReLU())
model:add(nn.SpatialMaxPooling(2, 2, 2, 2))
-- stage 3 : standard 2-layer MLP:
model:add(nn.Reshape(64*2*2))
model:add(nn.Linear(64*2*2, 200):init('weight', nninit.orthogonal, {gain = 'relu'}))
model:add(nn.ReLU())
model:add(nn.Linear(200, #classes):init('weight', nninit.orthogonal, {gain = 'relu'}))
------------------------------------------------------------
elseif opt.model == 'mlp' then
------------------------------------------------------------
-- regular 2-layer MLP
------------------------------------------------------------
model:add(nn.Reshape(1024))
model:add(nn.Linear(1024, 2048))
model:add(nn.Tanh())
model:add(nn.Linear(2048,#classes))
------------------------------------------------------------
elseif opt.model == 'linear' then
------------------------------------------------------------
-- simple linear model: logistic regression
------------------------------------------------------------
model:add(nn.Reshape(1024))
model:add(nn.Linear(1024,#classes))
------------------------------------------------------------
else
print('Unknown model type')
cmd:text()
error()
end
else
print('<trainer> reloading previously trained network')
model = torch.load(opt.network)
end
-- retrieve parameters and gradients
parameters,gradParameters = model:getParameters()
-- verbose
print('<mnist> using model:')
print(model)
----------------------------------------------------------------------
-- loss function: negative log-likelihood
--
model:add(nn.LogSoftMax())
criterion = nn.ClassNLLCriterion()
local get_batch = function()
local batch = torch.Tensor(opt.batchSize,1,geometry[1],geometry[2])
for i = 1,opt.batchSize do
local k = torch.random(nbTrainingPatches)
batch[i] = trainData[k][1]:clone()
end
return batch
end
if opt.lsuv then
model:lsuvInit(get_batch)
end
-- define training and testing functions
--
-- this matrix records the current confusion across classes
confusion = optim.ConfusionMatrix(classes)
-- log results to files
trainLogger = optim.Logger(paths.concat(opt.save, 'train.log'))
testLogger = optim.Logger(paths.concat(opt.save, 'test.log'))
-- training function
function train(dataset)
-- epoch tracker
epoch = epoch or 1
-- local vars
local time = sys.clock()
-- do one epoch
print('<trainer> on training set:')
print("<trainer> online epoch # " .. epoch .. ' [batchSize = ' .. opt.batchSize .. ']')
for t = 1,dataset:size(),opt.batchSize do
-- create mini batch
local inputs = torch.Tensor(opt.batchSize,1,geometry[1],geometry[2])
local targets = torch.Tensor(opt.batchSize)
local k = 1
for i = t,math.min(t+opt.batchSize-1,dataset:size()) do
-- load new sample
local sample = dataset[i]
local input = sample[1]:clone()
local _,target = sample[2]:clone():max(1)
target = target:squeeze()
inputs[k] = input
targets[k] = target
k = k + 1
end
-- create closure to evaluate f(X) and df/dX
local feval = function(x)
-- just in case:
collectgarbage()
-- get new parameters
if x ~= parameters then
parameters:copy(x)
end
-- reset gradients
gradParameters:zero()
-- evaluate function for complete mini batch
local outputs = model:forward(inputs)
local f = criterion:forward(outputs, targets)
-- estimate df/dW
local df_do = criterion:backward(outputs, targets)
model:backward(inputs, df_do)
-- penalties (L1 and L2):
if opt.coefL1 ~= 0 or opt.coefL2 ~= 0 then
-- locals:
local norm,sign= torch.norm,torch.sign
-- Loss:
f = f + opt.coefL1 * norm(parameters,1)
f = f + opt.coefL2 * norm(parameters,2)^2/2
-- Gradients:
gradParameters:add( sign(parameters):mul(opt.coefL1) + parameters:clone():mul(opt.coefL2) )
end
-- update confusion
for i = 1,opt.batchSize do
confusion:add(outputs[i], targets[i])
end
-- return f and df/dX
return f,gradParameters
end
-- optimize on current mini-batch
if opt.optimization == 'LBFGS' then
-- Perform LBFGS step:
lbfgsState = lbfgsState or {
maxIter = opt.maxIter,
lineSearch = optim.lswolfe
}
optim.lbfgs(feval, parameters, lbfgsState)
-- disp report:
print('LBFGS step')
print(' - progress in batch: ' .. t .. '/' .. dataset:size())
print(' - nb of iterations: ' .. lbfgsState.nIter)
print(' - nb of function evalutions: ' .. lbfgsState.funcEval)
elseif opt.optimization == 'SGD' then
-- Perform SGD step:
sgdState = sgdState or {
learningRate = opt.learningRate,
momentum = opt.momentum,
learningRateDecay = 5e-7
}
optim.sgd(feval, parameters, sgdState)
-- disp progress
xlua.progress(t, dataset:size())
else
error('unknown optimization method')
end
end
-- time taken
time = sys.clock() - time
time = time / dataset:size()
print("<trainer> time to learn 1 sample = " .. (time*1000) .. 'ms')
-- print confusion matrix
print(confusion)
trainLogger:add{['% mean class accuracy (train set)'] = confusion.totalValid * 100}
confusion:zero()
-- save/log current net
local filename = paths.concat(opt.save, 'mnist.net')
os.execute('mkdir -p ' .. sys.dirname(filename))
if paths.filep(filename) then
os.execute('mv ' .. filename .. ' ' .. filename .. '.old')
end
print('<trainer> saving network to '..filename)
-- torch.save(filename, model)
-- next epoch
epoch = epoch + 1
end
-- test function
function test(dataset)
-- local vars
local time = sys.clock()
-- test over given dataset
print('<trainer> on testing Set:')
for t = 1,dataset:size(),opt.batchSize do
-- disp progress
xlua.progress(t, dataset:size())
-- create mini batch
local inputs = torch.Tensor(opt.batchSize,1,geometry[1],geometry[2])
local targets = torch.Tensor(opt.batchSize)
local k = 1
for i = t,math.min(t+opt.batchSize-1,dataset:size()) do
-- load new sample
local sample = dataset[i]
local input = sample[1]:clone()
local _,target = sample[2]:clone():max(1)
target = target:squeeze()
inputs[k] = input
targets[k] = target
k = k + 1
end
-- test samples
local preds = model:forward(inputs)
-- confusion:
for i = 1,opt.batchSize do
confusion:add(preds[i], targets[i])
end
end
-- timing
time = sys.clock() - time
time = time / dataset:size()
print("<trainer> time to test 1 sample = " .. (time*1000) .. 'ms')
-- print confusion matrix
print(confusion)
testLogger:add{['% mean class accuracy (test set)'] = confusion.totalValid * 100}
confusion:zero()
end
----------------------------------------------------------------------
-- and train!
--
while true do
-- train/test
train(trainData)
test(testData)
-- plot errors
if opt.plot then
trainLogger:style{['% mean class accuracy (train set)'] = '-'}
testLogger:style{['% mean class accuracy (test set)'] = '-'}
trainLogger:plot()
testLogger:plot()
end
end