-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_rpr.py
383 lines (315 loc) · 16.3 KB
/
main_rpr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
"""
Entry point training and testing image-based and virtual RPR (for comparison)
"""
import argparse
import torch
import numpy as np
import json
import logging
from util import utils
import time
from datasets.CameraPoseDataset import CameraPoseDataset
from datasets.RelPoseDataset import RelPoseDataset
from models.pose_losses import CameraPoseLoss
from os.path import join
from models.transposenet.EMSTransPoseNet import EMSTransPoseNet
from models.rpr.RPR import RPR
import transforms3d as t3d
def compute_rel_pose(poses1, poses2):
# p1 p_rel = p2
rel_pose = torch.zeros_like(poses1)
poses1 = poses1.cpu().numpy()
poses2 = poses2.cpu().numpy()
for i, p1 in enumerate(poses1):
p2 = poses2[i]
t1 = p1[:3]
q1 = p1[3:]
rot1 = t3d.quaternions.quat2mat(q1 / np.linalg.norm(q1))
t2 = p2[:3]
q2 = p2[3:]
rot2 = t3d.quaternions.quat2mat(q2 / np.linalg.norm(q2))
t_rel = t2 - t1
rot_rel = np.dot(np.linalg.inv(rot1), rot2)
q_rel = t3d.quaternions.mat2quat(rot_rel)
rel_pose[i][:3] = torch.Tensor(t_rel).to(device)
rel_pose[i][3:] = torch.Tensor(q_rel).to(device)
return rel_pose
def batch_dot(v1, v2):
"""
Dot product along the dim=1
:param v1: (torch.tensor) Nxd tensor
:param v2: (torch.tensor) Nxd tensor
:return: N x 1
"""
out = torch.mul(v1, v2)
out = torch.sum(out, dim=1, keepdim=True)
return out
def qmult(quat_1, quat_2):
"""
Perform quaternions multiplication
:param quat_1: (torch.tensor) Nx4 tensor
:param quat_2: (torch.tensor) Nx4 tensor
:return: quaternion product
"""
# Extracting real and virtual parts of the quaternions
q1s, q1v = quat_1[:, :1], quat_1[:, 1:]
q2s, q2v = quat_2[:, :1], quat_2[:, 1:]
qs = q1s*q2s - batch_dot(q1v, q2v)
qv = q1v.mul(q2s.expand_as(q1v)) + q2v.mul(q1s.expand_as(q2v)) + torch.cross(q1v, q2v, dim=1)
q = torch.cat((qs, qv), dim=1)
return q
def compute_abs_pose_torch(rel_pose, abs_pose_neighbor):
abs_pose_query = torch.zeros_like(rel_pose)
abs_pose_query[:, :3] = abs_pose_neighbor[:, :3] + rel_pose[:, :3]
abs_pose_query[:, 3:] = qmult(abs_pose_neighbor[:, 3:], rel_pose[:, 3:])
return abs_pose_query
def compute_abs_pose(rel_pose, abs_pose_neighbor, device):
# p_neighbor p_rel = p_query
# p1 p_rel = p2
abs_pose_query = torch.zeros_like(rel_pose)
rel_pose = rel_pose.cpu().numpy()
abs_pose_neighbor = abs_pose_neighbor.cpu().numpy()
for i, rpr in enumerate(rel_pose):
p1 = abs_pose_neighbor[i]
t_rel = rpr[:3]
q_rel = rpr[3:]
rot_rel = t3d.quaternions.quat2mat(q_rel/ np.linalg.norm(q_rel))
t1 = p1[:3]
q1 = p1[3:]
rot1 = t3d.quaternions.quat2mat(q1/ np.linalg.norm(q1))
t2 = t1 + t_rel
rot2 = np.dot(rot1,rot_rel)
q2 = t3d.quaternions.mat2quat(rot2)
abs_pose_query[i][:3] = torch.Tensor(t2).to(device)
abs_pose_query[i][3:] = torch.Tensor(q2).to(device)
return abs_pose_query
def get_closest_sample(poses, scene_ids, dataset, start_index, sample_size=None, single_scene=False):
samples = []
poses = poses.cpu().numpy()
if not single_scene:
scene_ids = scene_ids.cpu().numpy()
for i, p in enumerate(poses):
# get the pose indices of the relevant scene
if not single_scene:
indices = np.where(np.array(dataset.scenes_ids) == scene_ids[i])[0]
else:
indices = list(range(len(dataset.poses)))
# get the poses
ref_poses = dataset.poses[indices]
dist_x = np.linalg.norm(p[:3] - ref_poses[:, :3], axis=1)
dist_x = dist_x / np.max(dist_x)
dist_q = np.linalg.norm(p[3:] - ref_poses[:, 3:], axis=1)
dist_q = dist_q / np.max(dist_q)
sorted = np.argsort(dist_x + dist_q)
if sample_size is not None:
closest_index = np.random.choice(sorted[start_index:(start_index+sample_size)], size=1)[0]
else:
closest_index = sorted[start_index]
neighbor_sample = dataset[indices[closest_index]]
samples.append(neighbor_sample)
return samples
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("mode", help="train or eval")
arg_parser.add_argument("rpr_backbone_path", help="path to backbone .pth - e.g. efficientnet")
arg_parser.add_argument("dataset_path", help="path to the physical location of the dataset")
arg_parser.add_argument("labels_file", help="path to a file mapping images to their poses")
arg_parser.add_argument("config_file", help="path to configuration file")
arg_parser.add_argument("--apr_checkpoint_path",
help="path to a pre-trained APR model")
arg_parser.add_argument("--apr_backbone_path", help="path to the APR backbone .pth - e.g. efficientnet")
arg_parser.add_argument("--pae_checkpoint_path",
help="path to a pre-trained PAE model (should match the APR model")
arg_parser.add_argument("--checkpoint_path",
help="path to a pre-trained RPR model")
arg_parser.add_argument("--ref_poses_file", help="path to file with train poses")
args = arg_parser.parse_args()
utils.init_logger()
# Record execution details
logging.info("Start {} experiment for RPR".format(args.mode))
logging.info("Using dataset: {}".format(args.dataset_path))
logging.info("Using labels file: {}".format(args.labels_file))
# Read configuration
with open(args.config_file, "r") as read_file:
config = json.load(read_file)
logging.info("Running with configuration:\n{}".format(
'\n'.join(["\t{}: {}".format(k, v) for k, v in config.items()])))
# Set the seeds and the device
use_cuda = torch.cuda.is_available()
device_id = 'cpu'
torch_seed = 0
numpy_seed = 2
torch.manual_seed(torch_seed)
if use_cuda:
torch.backends.cudnn.fdeterministic = True
torch.backends.cudnn.benchmark = False
device_id = config.get('device_id')
np.random.seed(numpy_seed)
device = torch.device(device_id)
# Image vs virtual-based RPR
rpr_type = "image-based"
do_pae_rpr = config.get("pae_rpr")
if do_pae_rpr: # Load the PAE
rpr_type = "virtual"
# Create the RPR model - pae- or image-based encoder
model = RPR(config, args.rpr_backbone_path, args.pae_checkpoint_path).to(device)
# Load the checkpoint if needed
if args.checkpoint_path:
model.load_state_dict(torch.load(args.checkpoint_path, map_location=device_id))
logging.info("Initializing from checkpoint: {}".format(args.checkpoint_path))
if args.mode == 'train':
# Set to train mode
model.train()
# Set the loss
pose_loss = CameraPoseLoss(config).to(device)
# Set the optimizer and scheduler
params = list(model.parameters()) + list(pose_loss.parameters())
optim = torch.optim.Adam(filter(lambda p: p.requires_grad, params),
lr=config.get('lr'),
eps=config.get('eps'),
weight_decay=config.get('weight_decay'))
scheduler = torch.optim.lr_scheduler.StepLR(optim,
step_size=config.get('lr_scheduler_step_size'),
gamma=config.get('lr_scheduler_gamma'))
transform = utils.train_transforms.get('baseline')
train_dataset = RelPoseDataset(args.dataset_path, args.labels_file, transform)
loader_params = {'batch_size': config.get('batch_size'),
'shuffle': True,
'num_workers': config.get('n_workers')}
dataloader = torch.utils.data.DataLoader(train_dataset, **loader_params)
# Get training details
n_freq_print = config.get("n_freq_print")
n_freq_checkpoint = config.get("n_freq_checkpoint")
n_epochs = config.get("n_epochs")
# Train
checkpoint_prefix = join(utils.create_output_dir('out'),utils.get_stamp_from_log())
n_total_samples = 0.0
loss_vals = []
sample_count = []
# Resetting temporal loss used for logging
running_loss = 0.0
n_samples = 0
for epoch in range(n_epochs):
for batch_idx, minibatch in enumerate(dataloader):
for k, v in minibatch.items():
minibatch[k] = v.to(device)
gt_rel_poses = minibatch['rel_pose'].to(dtype=torch.float32)
batch_size = gt_rel_poses.shape[0]
n_samples += batch_size
n_total_samples += batch_size
neighbor_poses = minibatch['pose2'].to(device).to(dtype=torch.float32)
# Estimate the relative pose
# Zero the gradients
optim.zero_grad()
if do_pae_rpr:
# Encode poses with known scene
gt_scenes = minibatch['scene_id2'].to(device).to(dtype=torch.int64)
neighbor_latent_x, neighbor_latent_q = model.encode_pose(neighbor_poses,
gt_scenes.unsqueeze(1).to(dtype=torch.float32))
else: # image based
neighbor_imgs = minibatch['img2'].to(device).to(torch.float32)
neighbor_latent_x, neighbor_latent_q = model.encode_img(neighbor_imgs)
est_rel_poses = model.regress_rel_pose(minibatch['img1'], neighbor_latent_x, neighbor_latent_q).get('rel_pose')
criterion = pose_loss(est_rel_poses, gt_rel_poses)
# Collect for recoding and plotting
running_loss += criterion.item()
loss_vals.append(criterion.item())
sample_count.append(n_total_samples)
# Back prop
criterion.backward()
optim.step()
# Record loss and performance on train set
if batch_idx % n_freq_print == 0:
posit_err, orient_err = utils.pose_err(est_rel_poses.detach(), gt_rel_poses.detach())
msg = "[Batch-{}/Epoch-{}] running relative camera pose loss: {:.3f}, camera pose error: {:.2f}[m], {:.2f}[deg]".format(
batch_idx+1, epoch+1, (running_loss/n_freq_print),
posit_err.mean().item(),
orient_err.mean().item())
posit_err, orient_err = utils.pose_err(neighbor_poses.detach(), minibatch['pose1'].to(dtype=torch.float32).detach())
msg = msg + ", distance from neighbor images: {:.2f}[m], {:.2f}[deg]".format(posit_err.mean().item(),
orient_err.mean().item())
logging.info(msg)
# Resetting temporal loss used for logging
running_loss = 0.0
n_samples = 0
# Save checkpoint3n
if (epoch % n_freq_checkpoint) == 0 and epoch > 0:
torch.save(model.state_dict(), checkpoint_prefix + '_{}_rpr_checkpoint-{}.pth'.format(rpr_type, epoch))
# Scheduler update
scheduler.step()
logging.info('Training completed')
torch.save(model.state_dict(), checkpoint_prefix + '_{}_rpr_final.pth'.format(rpr_type))
else: # Test
# APR model
apr = EMSTransPoseNet(config, args.apr_backbone_path)
apr.load_state_dict(torch.load(args.apr_checkpoint_path, map_location=device_id))
logging.info("Initializing from checkpoint: {}".format(args.apr_checkpoint_path))
apr.to(device)
apr.eval()
# Set to eval mode
model.eval()
# Set the dataset and data loader
transform = utils.test_transforms.get('baseline')
test_dataset = CameraPoseDataset(args.dataset_path, args.labels_file, transform, False)
loader_params = {'batch_size': 1,
'shuffle': False,
'num_workers': config.get('n_workers')}
dataloader = torch.utils.data.DataLoader(test_dataset, **loader_params)
train_dataset = CameraPoseDataset(args.dataset_path, args.ref_poses_file, transform, False, not do_pae_rpr)
time_stats_pae = np.zeros(len(dataloader.dataset))
time_stats_retrieval = np.zeros(len(dataloader.dataset))
time_stats_rpr = np.zeros(len(dataloader.dataset))
abs_stats = np.zeros((len(dataloader.dataset), 3))
with torch.no_grad():
for i, minibatch in enumerate(dataloader, 0):
for k, v in minibatch.items():
minibatch[k] = v.to(device)
minibatch['scene'] = None # avoid using ground-truth scene during prediction
gt_pose = minibatch.get('pose').to(dtype=torch.float32)
# Forward pass to predict the pose
t0 = time.time()
res = apr(minibatch)
init_est_pose = res.get('pose')
scene_dist = res.get('scene_log_distr')
scene = torch.argmax(scene_dist, dim=1).to(dtype=torch.float32).unsqueeze(1)
tic = time.time()
# get closest pose / image
neighbor_sample = get_closest_sample(init_est_pose, scene, train_dataset, start_index=0, single_scene=True)[0]
closest_pose = torch.Tensor(neighbor_sample['pose']).unsqueeze(0).to(device).to(torch.float32)
time_stats_retrieval[i] = (time.time() - tic) * 1000
# Encode the pose or the image
if do_pae_rpr:
tic = time.time()
latent_x, latent_q = model.encode_pose(closest_pose, scene)
torch.cuda.synchronize()
time_stats_pae[i] = (time.time() - tic)*1000
tic = time.time()
else:
tic = time.time()
closest_img = neighbor_sample['img'].unsqueeze(0).to(device)
latent_x, latent_q = model.encode_img(closest_img)
# Regress the relative pose
res = model.regress_rel_pose(minibatch['img'], latent_x, latent_q)
est_rel_pose = res['rel_pose']
# Flip to get the relative from neighbor to query
est_rel_pose[:, :3] = -est_rel_pose[:, :3]
est_rel_pose[:, 4:] = -est_rel_pose[:, 4:]
est_pose = compute_abs_pose(est_rel_pose, closest_pose, device)
torch.cuda.synchronize()
tn = time.time()
time_stats_rpr[i] = (tn - tic)*1000
# Evaluate error
posit_err, orient_err = utils.pose_err(est_pose, gt_pose)
# Collect statistics
abs_stats[i, 0] = posit_err.item()
abs_stats[i, 1] = orient_err.item()
abs_stats[i, 2] = (tn - t0)*1000
logging.info("Absolute Pose error: {:.3f}[m], {:.3f}[deg], inferred in {:.2f}[ms]".format(
abs_stats[i, 0], abs_stats[i, 1], abs_stats[i, 2]))
# Record overall statistics
logging.info("Performance of {} on {}".format(args.checkpoint_path, args.labels_file))
logging.info("Median absolute pose error: {:.3f}[m], {:.3f}[deg]".format(np.nanmedian(abs_stats[:, 0]), np.nanmedian(abs_stats[:, 1])))
logging.info("Mean pose inference time:{:.2f}[ms]".format(np.mean(abs_stats[:, 2])))
logging.info("Mean retrieval inference time:{:.2f}[ms]".format(np.mean(time_stats_retrieval)))
logging.info("Mean PAE inference time:{:.2f}[ms]".format(np.mean(time_stats_pae)))
logging.info("Mean {} RPR inference time:{:.2f}[ms]".format(rpr_type, np.mean(time_stats_rpr)))