-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_img_skip.py
366 lines (345 loc) · 15.2 KB
/
train_img_skip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
#!/usr/bin/env python3
import sys
import os
import argparse
import json
import random
import shutil
import copy
import torch
from torch import cuda
import torch.nn as nn
from torch.autograd import Variable
from torch.nn.parameter import Parameter
import torch.nn.functional as F
import numpy as np
import h5py
import time
import logging
from models_img_skip import CNNVAE, MLPVAE
from optim_n2n import OptimN2N
import utils
import torch.utils.data
parser = argparse.ArgumentParser()
# Input data
parser.add_argument('--data_file', default='data/mnist/static_data.pt')
parser.add_argument('--train_from', default='')
parser.add_argument('--checkpoint_path', default='baseline.pt')
# Model options
parser.add_argument('--img_size', default=[1,28,28])
parser.add_argument('--latent_dim', default=20, type=int)
parser.add_argument('--enc_layers', default=[64,64,64])
parser.add_argument('--dec_kernel_size', default=[3,3,3,3,3,3,3,3], type=int)
parser.add_argument('--dec_layers', default=[32,32,32,32,32,32,32,32])
parser.add_argument('--latent_feature_map', default=1, type=int)
parser.add_argument('--model', default='vae', type=str, choices = ['vae', 'autoreg', 'savae', 'svi'])
parser.add_argument('--train_kl', default=1, type=int)
parser.add_argument('--train_n2n', default=1, type=int)
# Optimization options
parser.add_argument('--skip', default=0, type=int)
parser.add_argument('--num_epochs', default=100, type=int)
parser.add_argument('--svi_steps', default=20, type=int)
parser.add_argument('--svi_lr1', default=1, type=float)
parser.add_argument('--svi_lr2', default=1, type=float)
parser.add_argument('--eps', default=1e-5, type=float)
parser.add_argument('--momentum', default=0.5, type=float)
parser.add_argument('--warmup', default=0, type=int)
parser.add_argument('--lr', default=1e-3, type=float)
parser.add_argument('--max_grad_norm', default=5, type=float)
parser.add_argument('--svi_max_grad_norm', default=5, type=float)
parser.add_argument('--gpu', default=2, type=int)
parser.add_argument('--slurm', default=0, type=int)
parser.add_argument('--batch_size', default=50, type=int)
parser.add_argument('--seed', default=354, type=int)
parser.add_argument('--print_every', type=int, default=500)
parser.add_argument('--test', type=int, default=0)
def main(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
all_data = torch.load(args.data_file)
x_train, x_val, x_test = all_data
y_size = 1
y_train = torch.zeros(x_train.size(0), y_size)
y_val = torch.zeros(x_val.size(0), y_size)
y_test = torch.zeros(x_test.size(0), y_size)
train = torch.utils.data.TensorDataset(x_train, y_train)
val = torch.utils.data.TensorDataset(x_val, y_val)
test = torch.utils.data.TensorDataset(x_test, y_test)
train_loader = torch.utils.data.DataLoader(train, batch_size=args.batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(val, batch_size=args.batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test, batch_size=args.batch_size, shuffle=True)
print('Train data: %d batches' % len(train_loader))
print('Val data: %d batches' % len(val_loader))
print('Test data: %d batches' % len(test_loader))
if args.slurm == 0:
cuda.set_device(args.gpu)
if args.model == 'autoreg':
args.latent_feature_map = 0
if args.train_from == '':
model = CNNVAE(img_size = args.img_size,
latent_dim = args.latent_dim,
enc_layers = args.enc_layers,
dec_kernel_size = args.dec_kernel_size,
dec_layers = args.dec_layers,
latent_feature_map = args.latent_feature_map,
skip = args.skip)
else:
print('loading model from ' + args.train_from)
checkpoint = torch.load(args.train_from)
model = checkpoint['model']
print("model architecture")
print(model)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999))
model.cuda()
model.train()
def variational_loss(input, img, model, z = None):
mean, logvar = input
z_samples = model._reparameterize(mean, logvar, z)
preds = model._dec_forward(img, z_samples)
nll = utils.log_bernoulli_loss(preds, img)
kl = utils.kl_loss_diag(mean, logvar)
return nll + args.beta*kl
update_params = list(model.dec.parameters())
meta_optimizer = OptimN2N(variational_loss, model, update_params, eps = args.eps,
lr = [args.svi_lr1, args.svi_lr2],
iters = args.svi_steps, momentum = args.momentum,
acc_param_grads= args.train_n2n == 1,
max_grad_norm = args.svi_max_grad_norm)
epoch = 0
t = 0
best_val_nll = 1e5
best_epoch = 0
loss_stats = []
if args.warmup == 0:
args.beta = 1.
else:
args.beta = 0.1
if args.test == 1:
args.beta = 1
agg_kl = get_agg_kl(test_loader, test_loader, model)
eval(test_loader, model, meta_optimizer, agg_kl)
exit()
while epoch < args.num_epochs:
start_time = time.time()
epoch += 1
print('Starting epoch %d' % epoch)
train_nll_vae = 0.
train_nll_autoreg = 0.
train_kl_vae = 0.
train_nll_svi = 0.
train_kl_svi = 0.
num_examples = 0
for b, datum in enumerate(train_loader):
if args.warmup > 0:
args.beta = min(1, args.beta + 1./(args.warmup*len(train_loader)))
img, _ = datum
img = torch.bernoulli(img)
batch_size = img.size(0)
img = Variable(img.cuda())
t += 1
optimizer.zero_grad()
if args.model == 'autoreg':
preds = model._dec_forward(img, None)
nll_autoreg = utils.log_bernoulli_loss(preds, img)
train_nll_autoreg += nll_autoreg.data[0]*batch_size
nll_autoreg.backward()
elif args.model == 'svi':
mean_svi = Variable(0.1*torch.zeros(batch_size, args.latent_dim).cuda(), requires_grad = True)
logvar_svi = Variable(0.1*torch.zeros(batch_size, args.latent_dim).cuda(), requires_grad = True)
var_params_svi = meta_optimizer.forward([mean_svi, logvar_svi], img,
t % args.print_every == 0)
mean_svi_final, logvar_svi_final = var_params_svi
z_samples = model._reparameterize(mean_svi_final.detach(), logvar_svi_final.detach())
preds = model._dec_forward(img, z_samples)
nll_svi = utils.log_bernoulli_loss(preds, img)
train_nll_svi += nll_svi.data[0]*batch_size
kl_svi = utils.kl_loss_diag(mean_svi_final, logvar_svi_final)
train_kl_svi += kl_svi.data[0]*batch_size
var_loss = nll_svi + args.beta*kl_svi
var_loss.backward()
else:
mean, logvar = model._enc_forward(img)
z_samples = model._reparameterize(mean, logvar)
preds = model._dec_forward(img, z_samples)
nll_vae = utils.log_bernoulli_loss(preds, img)
train_nll_vae += nll_vae.data[0]*batch_size
kl_vae = utils.kl_loss_diag(mean, logvar)
train_kl_vae += kl_vae.data[0]*batch_size
if args.model == 'vae':
vae_loss = nll_vae + args.beta*kl_vae
vae_loss.backward(retain_graph = True)
if args.model == 'savae':
var_params = torch.cat([mean, logvar], 1)
mean_svi = Variable(mean.data, requires_grad = True)
logvar_svi = Variable(logvar.data, requires_grad = True)
var_params_svi = meta_optimizer.forward([mean_svi, logvar_svi], img,
t % args.print_every == 0)
mean_svi_final, logvar_svi_final = var_params_svi
z_samples = model._reparameterize(mean_svi_final, logvar_svi_final)
preds = model._dec_forward(img, z_samples)
nll_svi = utils.log_bernoulli_loss(preds, img)
train_nll_svi += nll_svi.data[0]*batch_size
kl_svi = utils.kl_loss_diag(mean_svi_final, logvar_svi_final)
train_kl_svi += kl_svi.data[0]*batch_size
var_loss = nll_svi + args.beta*kl_svi
var_loss.backward(retain_graph = True)
if args.train_n2n == 0:
if args.train_kl == 1:
mean_final = mean_svi_final.detach()
logvar_final = logvar_svi_final.detach()
kl_init_final = utils.kl_loss(mean, logvar, mean_final, logvar_final)
kl_init_final.backward(retain_graph = True)
else:
vae_loss = nll_vae + args.beta*kl_vae
var_param_grads = torch.autograd.grad(vae_loss, [mean, logvar], retain_graph=True)
var_param_grads = torch.cat(var_param_grads, 1)
var_params.backward(var_param_grads, retain_graph=True)
else:
var_param_grads = meta_optimizer.backward([mean_svi_final.grad, logvar_svi_final.grad],
t % args.print_every == 0)
var_param_grads = torch.cat(var_param_grads, 1)
var_params.backward(var_param_grads)
if args.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm(model.parameters(), args.max_grad_norm)
optimizer.step()
num_examples += batch_size
if t % args.print_every == 0:
param_norm = sum([p.norm()**2 for p in model.parameters()]).data[0]**0.5
print('Iters: %d, Epoch: %d, Batch: %d/%d, LR: %.4f, TrainARNLL: %.2f, TrainVAE_NLL: %.2f, TrainVAE_KL: %.4f, TrainVAE_NLLBnd: %.2f, TrainSVI_NLL: %.2f, TrainSVI_KL: %.4f, TrainSVI_NLLBnd: %.2f, |Param|: %.4f, BestValPerf: %.2f, BestEpoch: %d, Beta: %.3f, Throughput: %.2f examples/sec' %
(t, epoch, b+1, len(train_loader), args.lr, train_nll_autoreg / num_examples,
train_nll_vae/num_examples, train_kl_vae / num_examples,
(train_nll_vae + train_kl_vae)/num_examples,
train_nll_svi/num_examples, train_kl_svi/ num_examples,
(train_nll_svi + train_kl_svi)/num_examples,
param_norm, best_val_nll, best_epoch, args.beta,
num_examples / (time.time() - start_time)))
print('--------------------------------')
print('Checking validation perf...')
val_nll = eval(val_loader, model, meta_optimizer)
loss_stats.append(val_nll)
if val_nll < best_val_nll:
best_val_nll = val_nll
best_epoch = epoch
checkpoint = {
'args': args.__dict__,
'model': model,
'optimizer': optimizer,
'loss_stats': loss_stats
}
print('Savaeng checkpoint to %s' % args.checkpoint_path)
torch.save(checkpoint, args.checkpoint_path)
def get_agg_kl(q_data, test_data, model):
model.eval()
means = []
logvars = []
all_z = []
for datum in q_data:
img, _ = datum
batch_size = img.size(0)
img = Variable(img.cuda())
mean, logvar = model._enc_forward(img)
z_samples = model._reparameterize(mean, logvar)
means.append(mean.data)
logvars.append(logvar.data)
all_z.append(z_samples.data)
means = torch.cat(means, 0)
logvars = torch.cat(logvars, 0)
N = float(means.size(0))
mean_prior = torch.zeros(1, means.size(1)).cuda()
logvar_prior = torch.zeros(1, means.size(1)).cuda()
agg_kl = 0.
count = 0.
for datum in test_data:
img, _ = datum
batch_size = img.size(0)
img = Variable(img.cuda())
mean, logvar = model._enc_forward(img)
z_samples = model._reparameterize(mean, logvar).data
for i in range(z_samples.size(0)):
z_i = z_samples[i].unsqueeze(0).expand_as(means)
log_agg_density = utils.log_gaussian(z_i, means, logvars) # log q(z|x) for all x
log_q = utils.logsumexp(log_agg_density, 0)
log_q = -np.log(N) + log_q
log_p = utils.log_gaussian(z_samples[i].unsqueeze(0), mean_prior, logvar_prior)
agg_kl += log_q.sum()- log_p.sum()
count += 1
mean_var = means.var(0)
print('active units', (mean_var > 0.02).float().sum())
print(mean_var)
return agg_kl / count
def eval(data, model, meta_optimizer, agg_kl = 0):
model.eval()
num_examples = 0
total_nll_autoreg = 0.
total_nll_vae = 0.
total_kl_vae = 0.
total_nll_svi = 0.
total_kl_svi = 0.
total_kl_dim = 0
for datum in data:
img, _ = datum
batch_size = img.size(0)
img = Variable(img.cuda())
if args.model == 'autoreg':
preds = model._dec_forward(img, None)
nll_autoreg = utils.log_bernoulli_loss(preds, img)
total_nll_autoreg += nll_autoreg.data[0]*batch_size
elif args.model == 'svi':
mean_svi = Variable(0.1*torch.zeros(batch_size, args.latent_dim).cuda(), requires_grad = True)
logvar_svi = Variable(0.1*torch.zeros(batch_size, args.latent_dim).cuda(), requires_grad = True)
var_params_svi = meta_optimizer.forward([mean_svi, logvar_svi], img)
mean_svi_final, logvar_svi_final = var_params_svi
z_samples = model._reparameterize(mean_svi_final.detach(), logvar_svi_final.detach())
preds = model._dec_forward(img, z_samples)
nll_svi = utils.log_bernoulli_loss(preds, img)
total_nll_svi += nll_svi.data[0]*batch_size
kl_svi = utils.kl_loss_diag(mean_svi_final, logvar_svi_final)
total_kl_svi += kl_svi.data[0]*batch_size
else:
mean, logvar = model._enc_forward(img)
z_samples = model._reparameterize(mean, logvar)
preds = model._dec_forward(img, z_samples)
nll_vae = utils.log_bernoulli_loss(preds, img)
total_nll_vae += nll_vae.data[0]*batch_size
kl_vae = utils.kl_loss_diag(mean, logvar)
total_kl_vae += kl_vae.data[0]*batch_size
kl_dim = utils.kl_loss_dim(mean, logvar)
total_kl_dim += kl_dim.sum(0).data
if args.model == 'savae':
mean_svi = Variable(mean.data, requires_grad = True)
logvar_svi = Variable(logvar.data, requires_grad = True)
var_params_svi = meta_optimizer.forward([mean_svi, logvar_svi], img)
mean_svi_final, logvar_svi_final = var_params_svi
z_samples = model._reparameterize(mean_svi_final, logvar_svi_final)
preds = model._dec_forward(img, z_samples.detach())
nll_svi = utils.log_bernoulli_loss(preds, img)
total_nll_svi += nll_svi.data[0]*batch_size
kl_svi = utils.kl_loss_diag(mean_svi_final, logvar_svi_final)
total_kl_svi += kl_svi.data[0]*batch_size
mean, logvar = mean_svi_final, logvar_svi_final
num_examples += batch_size
nll_autoreg = total_nll_autoreg / num_examples
nll_vae = total_nll_vae/ num_examples
kl_vae = total_kl_vae / num_examples
nll_bound_vae = (total_nll_vae + total_kl_vae)/num_examples
nll_svi = total_nll_svi/num_examples
kl_svi = total_kl_svi/num_examples
nll_bound_svi = (total_nll_svi + total_kl_svi)/num_examples
kl_dim = total_kl_dim / num_examples
print([ '%.4f' % e for e in list(kl_dim)])
print('')
print('NEG ELBO: %.4f, KL: %.4f, AGG KL: %.4f, MI: %.4f ' %
(nll_bound_vae, kl_vae, agg_kl, kl_vae - agg_kl))
print('')
print('AR NLL: %.4f, VAE NLL: %.4f, VAE KL: %.4f, VAE NLL BOUND: %.4f, SVI PPL: %.4f, SVI KL: %.4f, SVI NLL BOUND: %.4f' %
(nll_autoreg, nll_vae, kl_vae, nll_bound_vae, nll_svi, kl_svi, nll_bound_svi))
model.train()
if args.model == 'autoreg':
return nll_autoreg
elif args.model == 'vae':
return nll_bound_vae
elif args.model == 'savae' or args.model == 'svi':
return nll_bound_svi
if __name__ == '__main__':
args = parser.parse_args()
main(args)